Выбери любимый жанр

Диалоги (июнь 2003 г.) - Гордон Александр - Страница 4


Перейти на страницу:
Изменить размер шрифта:

4

А.Г. Можно ещё чуть подробнее, что такое «центр тяжести» в данном случае, потому что я понял, но не до конца. Ещё раз можете объяснить, что такое принцип динамического подхода, присвоение веса и так далее?

А.Р. То, что мы для каждого исхода случайного события имеем какую-то числовую величину – это просто набор прогнозов на будущее. Нам этот набор не делает погоды, из него надо получить какую-то одну величину, одно значение, которое всю ветвь, которая следует за случайными событиями, оценивает приемлемой величиной, основываясь на которой мы сделаем решение – ходить нам так или предпочесть другой вариант. Так вот, на основе чего получается общая оценка этого набора прогнозов? Каждую точку, каждую величину, грубо говоря, можно представить шариком на стержне. Стержень у нас длиной от минус единицы до единицы, минус единица – это значит, что дела для нас очень плохо пойдут. Единица – что очень хорошо, мы победители. На этот стержень нанизаны шарики. Каждый на своём расстоянии от нулевой точки. Это расстояние соответствует значению прогноза.

Теперь мы подбираем массу этих шариков, а масса этих шариков подбирается согласно функции риска.

Б.М. Чем больше значение этой функции в данной точке, тем больше масса шарика.

А.Р. А потом этот стержень уравновешиваем и находим положение центра тяжести.

Б.М. Это, видимо, лучше объяснение, чем моё…

А.Г. Оно доступнее, да.

А.Р. Этот центр тяжести, его положение, мы считаем величиной, которая…

А.Г. Оптимальной величиной, которая позволяет сделать…

А.Р. Не сказать, чтобы оптимальной, это просто характерная величина, которая более-менее описывает куст с этими случайными событиями. И мы её принимаем в качестве оценки.

Б.М. Давайте тогда следующий шаг сделаем. Это был первый шаг нашей оценки, именно на этом мы получили достаточно хорошую программу, которая, правда, всё-таки была хуже этого «Джели-фиша» пресловутого. Следующий шаг такой. Эти функции риска, мы, как правило, брали, условно говоря, пессимистические – человек в жизни должен быть хоть немного пессимистом и ожиданиям плохого придавать больший вес, чем ожиданию хорошего.

А.Г. То есть вы определяли себя игроком хуже, чем ваш партнёр?

Б.М. Нет, не так: плохие показания кубиков мы ожидали с большей вероятностью, чем хорошие показания кубиков. В общем, это, наверное, естественно – когда мы идём гулять, совершенно ничего не зная про прогноз погоды, то, наверное, зонтик всё-таки стоит брать. Здесь фактически то же самое.

И уже на этом мы подбирали разные виды этих функций риска. Уже здесь мы почти вплотную приблизились к «Джели-фишу». Если мы сейчас у него выигрываем (ещё раз повторяю, на нашем российском варианте нард) где-то 55 процентов, может, чуть побольше, тогда мы проигрывали столько же. Но это уже было хорошо. Выигрываем на убывающих функциях риска. Убывающих – это означает, что мы хоть немного, да пессимисты.

Следующий шаг, про который я никак не начну говорить, такой. Всё-таки бывают ситуации, когда надо быть оптимистами, редко, но бывают. А, может быть, не очень редко. Что это такое? Это когда мы сильно проигрываем. То есть когда положение заведомо не в нашу пользу, всё равно нам проигрывать. Здесь нет варианта проиграть слишком много. (Немножко отвлекаясь, в бэкгеммоне есть разные варианты проигрыша, но, как правило, об этом в конкретной позиции речь не идёт.) Если идёт речь о том, чтобы проиграть либо одно очко, либо, может быть, всё-таки выиграть, нам надо строить оптимистическую функцию риска, которая бы учитывала вероятность выпадения нам хороших показаний кубиков. Тогда эти вероятности надо сильно увеличить. Почему? Русская пословица есть – утопающий хватается за соломинку.

А.Г. Речь идёт о стратегии игры?

Б.М. Да, конечно. Но откуда известно, как мы стоим – хорошо или плохо? Например, по той же самой статической оценке позиции, во-вторых, по динамической оценке позиции, взятой с какой-нибудь простой функции риска. Вот это всё приводит к динамическому выбору функции риска. Примерно выбрав, как мы стоим, выигрыш, проигрыш или в серединке, мы за счёт этого динамически строим функцию риска. Например, когда априорно позиция примерно равна, эта функция риска действительно немножко убывает. То есть она похожа на линейную функцию, константу, которая от минус единицы до плюс единицы убудет, начиная со значения единицы, примерно до одной второй. Примерно такая функция риска, убывающая, немножко пессимистическая, соответствует тому, что – пойдёт дождик или не пойдёт дождик – зонтик мы возьмём.

Если же мы заведомо проигрываем, функция риска сильно возрастает. Если же мы выигрываем очень сильно, то мы должны быть сверхпессимистами и очень плохие прогнозы предполагать с гораздо большими вероятностями. И функция риска будет становиться функцией сверхпессимиста. И в зависимости от такого предварительного подсчёта, предварительной генерации, мы и строим динамическую функцию риска.

Поскольку я постоянно делаю шаги в другие задачи дискретной оптимизации, то я здесь сделаю ещё один. Например, некоторые программы-эксперты высчитывают время, оставшееся до получения хорошего ответа (не обязательно оптимального, но близкого к оптимальному) в какой-нибудь задаче дискретной оптимизации, например, в той же самой пресловутой «задаче коммивояжёра» или в минимизации конечных автоматов – тоже одна из моих любимых задач. И разные программы-эксперты оценивают: если в среднем эти программы дают время вычисления, которое очень высоко, гораздо больше, чем если мы пойдём по другой ветке вычислений, то мы здесь применим какую-то оптимистическую функцию риска. Если время будет, наоборот, слишком маленькое, то пессимистическую. Это всё имеет выход в другие задачи дискретной оптимизации.

А.Г. Это то, что у игрока называется интуицией во время игры.

Б.М. Да. Это второй шаг – он самый главный. Первым шагом было введение функции риска, вторым – динамической функции риска. Есть и третий шаг, который тоже может быть важен, хотя менее важен, чем второй. Это применение несколько раз подряд этих функций риска, потому что после первого применения мы немножко уточняем оценку позиции. А раз немножко уточняем оценку позиции, то можем немножко более определённо сказать – мы пессимисты или оптимисты. А в следующий раз мы ещё более определённо будем говорить, ещё раз и ещё раз.

Казалось бы, что это очень долгие вычисления, но нет – по сравнению со всем остальным объёмом вычисления, связанного с получением статических оценок позиции, с организацией перебора и так далее. Это неоднократное применение функции риска, динамическая функция риска, фактически совершенно не занимает времени, то есть там какие-то доли процента – даже, кажется, мы и не считали, какие именно доли процента. Даёт ли этот третий шаг большой выигрыш по сравнению только со вторым? Я затрудняюсь сказать, но раз без каких бы то ни было усилий мы можем получить какое-то преимущество, то, наверное, даёт.

Дело в том, что у меня описаны примеры именно конкретных реализаций, статистических оценок позиций, когда это должно дать преимущество, должно дать плюсы. Но насколько часто эти примеры проявляются в нардах – я сказать затрудняюсь.

А.Г. Вы сами у своей программы выигрываете?

Б.М. Проигрываю. Это, кстати, интересный вопрос, хорошо, что он возник, было бы плохо, если бы он не возник. Я в нардах специалист, но, конечно, условно говоря, не гроссмейстер. Хотя, может быть, моя квалификация в нардах и выше, чем была моя квалификация в шахматах, когда я ещё играл – кандидат в мастера. Вот здесь интересный момент – почему я проигрываю? Я всё-таки человек, и поддаюсь иногда азарту, хотя, конечно, в казино не хожу и только в дурном сне могу представить, что я в казино пойду. Там от меня ничего не зависит, там просто фишки, как выпадут, так и выпадут. А здесь от меня зависит, от моего интеллекта.

4
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело