Большая Советская Энциклопедия (АВ) - Большая Советская Энциклопедия "БСЭ" - Страница 81
- Предыдущая
- 81/133
- Следующая
А. В. Волженский.
Автокод
Автоко'д, простой язык программирования; система команд некоторой условной машины, способной в качестве элементарных выполнять значительно более сложные операции, чем данная конкретная ЭВМ. Наиболее распространены А. типа 1:1, в которых основной элемент языка (оператор, строка) при переводе на языке цифровой вычислительной машины (ЦВМ) преобразуется в одну команду. С помощью А. типа 1:1 можно составить любую программу, которая возможна в системе команд вычислительной машины. Программирование на А. типа 1:1 эквивалентно программированию на языке ЦВМ, однако более удобно для человека и ускоряет работу примерно в 3 раза. А., отличные от А. типа 1:1, ориентируются не на систему команд ЦВМ, а на класс решаемых задач, значительно ускоряют работу по программированию, но не дают возможности получить программу такого же высокого качества, какое в принципе достижимо при программировании на языке ЦВМ или на А. типа 1:1. В А. (не типа 1:1) основной элемент языка (оператор) при переводе в код ЦВМ преобразуется, как правило, в совокупность нескольких команд. Указать резкую границу между А. и другими (более сложными) языками программирования невозможно. Примерами А. типа 1:1 могут служить А., разработанные в СССР для ЦВМ БЭСМ-6 и «Урал». Пример более сложного А. — А. типа «Инженер» для ЦВМ «Минск».
Алгоритм, заданный на А., перерабатывается в программу ЦВМ с помощью т. н. программы-транслятора, которая может по заданию программиста производить также простейшее распределение памяти, автоматическую компоновку программ из отдельных частей с использованием библиотеки подпрограмм и другие операции.
Во многих системах автоматического программирования А. служит промежуточным языком при переводе с другого языка программирования в код ЦВМ.
Лит. см. при статье Язык программирования.
В. И. Собельман.
Автоколебания
Автоколеба'ния, незатухающие колебания, которые могут существовать в какой-либо системе при отсутствии переменного внешнего воздействия, причём амплитуда и период колебаний определяются свойствами самой системы. Этим А. отличаются от вынужденных колебаний, амплитуда и период которых определяются характером внешнего воздействия (приставка «авто» и указывает на то, что колебания возникают в самой системе, а не навязываются внешним воздействием). А. отличаются и от свободных колебаний (например, колебаний свободно подвешенного маятника, колебаний силы тока в электрическом контуре) тем, что, во-первых, свободные колебания постепенно затухают, во-вторых, их амплитуда зависит от первоначального «толчка», создающего эти колебания. Примерами А. могут служить колебания, совершаемые маятником часов, колебания струны в смычковых или столба воздуха в духовых музыкальных инструментах, электрические колебания в ламповом генераторе (см. Генерирование электрических колебаний). Системы, в которых возникают А., называются автоколебательными.
Автоколебательные системы во многих случаях можно разделить на 3 основных элемента: 1) колебательную систему (в узком смысле); 2) источник энергии, за счет которого поддерживаются А., и 3) устройство, регулирующее поступление энергии из источника в колебательную систему. Эти 3 основных элемента могут быть отчётливо выделены, например, в часах, в которых маятник или баланс служит колебательной системой, пружинный или гиревой завод — источником энергии, и, наконец, анкерный ход — механизмом, регулирующим поступление энергии из источника в систему. В ламповом генераторе колебательной системой служит контур, содержащий ёмкость и индуктивность и обладающий малым активным сопротивлением; выпрямитель (или батарея), питающий напряжением анод лампы, является источником энергии, а электронная лампа с элементом обратной связи — устройством, регулирующим поступление энергии из источника в колебательный контур.
В часах, например, А. осуществляются следующим образом (рис.). При прохождении качающегося балансира 1 через определённое положение (обычно дважды за период) спусковое устройство 2 и 3 подталкивает колесо балансира, сообщая ему энергию, необходимую для того, чтобы компенсировать потерю энергии за полпериода колебаний. Балансир часов совершает А. с амплитудой, целиком определяемой свойствами часового механизма. Однако для того, чтобы эти А. возникли, обычно нужно не только завести пружинный завод, но и слегка встряхнуть часы, т. е. сообщить начальный толчок балансиру. Т. о., часы — это в большинстве случаев автоколебательная система без самовозбуждения. В духовых инструментах продувание струи воздуха поддерживает А. столба воздуха в трубе инструмента, а в струнных смычковых инструментах А. поддерживаются силой трения, действующей между смычком и струной.
Чтобы колебания были незатухающими, поступающая из источника в систему энергия должна компенсировать потери энергии в самой системе. Такая компенсация происходит в целом за период колебаний; но в одни части периода поступающая энергия может превышать потери в системе, в другие, наоборот, потери в системе могут превышать поступление энергии в неё. То значение амплитуды колебаний, при котором происходит компенсация потерь в целом за период, и является стационарным (не изменяющимся со временем) значением амплитуды А. Такой баланс поступления и потерь энергии оказывается возможным только при определённых значениях амплитуды А. (в простейших случаях только при одном значении).
Обычно при значениях амплитуды колебаний, меньших стационарной, поступление энергии в систему превышает потери в ней, вследствие чего амплитуда колебаний возрастает и достигает стационарного значения. В частности, если в систему поступает энергия больше, чем теряется в ней при сколь угодно малых амплитудах колебаний, то происходит самовозбуждение колебаний. Наоборот, при амплитудах, превышающих стационарное значение, потери энергии в системе обычно превышают поступление энергии из источника, вследствие чего амплитуда колебаний уменьшается и также достигает стационарного значения. Т. о., отклонения амплитуды А. в ту или другую сторону от стационарного значения затухают, и А. в этих случаях устойчивы.
Однако в некоторых случаях отклонение амплитуды колебаний от стационарного значения и нарушение компенсации потерь энергии в системе приводят к дальнейшему росту отклонений амплитуды от стационарного значения. Это будет иметь место, если при уменьшении амплитуды потери начинают преобладать над поступлением энергии или, наоборот, при увеличении амплитуды поступление энергии начинает преобладать над потерями. В этом случае А. неустойчивы, и, вследствие наличия во всякой реальной системе неизбежных возмущений и толчков, такие А. длительное время существовать не могут.
Форма А. может быть различной. Если добротность колебательной системывелика, т. е. потери энергии в колебательной системе относительно малы, то для поддержания А. в систему за период должно поступать количество энергии, очень малое по сравнению с полной энергией колебательной системы. При этом характер происходящих процессов почти не изменяется по сравнению с тем, как они протекали бы в системе без поступления энергии. В этом случае период и форма А. будут очень близки к периоду и форме собственных колебаний колебательной системы; если собственные колебания в системе по форме близки к гармоническим, то А. также близки к гармоническим.
В систему с малой добротностью для поддержания А. должна поступать энергия, уже не малая по сравнению с энергией системы, что может существенно изменить характер происходящих в ней процессов; в частности, форма А. может значительно отличаться от синусоидальной. Если за период А. рассеивается вся накопленная в системе энергия (т. е. система уже не колебательная, а апериодическая), то А. могут очень сильно отличаться по форме от синусоидальных, т. е. превратиться в т. н. релаксационные колебания.
- Предыдущая
- 81/133
- Следующая