Выбери любимый жанр

Большая Советская Энциклопедия (ГА) - Большая Советская Энциклопедия "БСЭ" - Страница 112


Перейти на страницу:
Изменить размер шрифта:

112

  При прохождении по обмотке Г. кратковременного импульса тока получается баллистический отброс подвижной части из нулевого положения с последующим возвращением к нему после нескольких колебаний. Если длительность импульса значительно меньше периода собственных колебаний подвижной части, то первое наибольшее отклонение указателя пропорционально количеству электричества, перенесённого импульсом. Для измерения количества электричества при сравнительно продолжительных импульсах изготовляют Г. баллистические, у которых момент инерции подвижной части значительно больше, чем у обычных Г. С помощью баллистических Г. можно измерять количество электричества при импульсах продолжительностью до 2 сек.

  Для обнаружения малых значений силы переменного тока или напряжений применяют Г. вибрационные переменного тока и с преобразователями переменного тока в постоянный. Вибрационные Г. по принципу действия идентичны Г. постоянного тока и отличаются от них только тем, что имеют очень малый момент инерции подвижной части. Устройство вибрационного Г. с подвижным магнитом показано на рис. 3 . Подвижная пластинка 3 из магнитомягкой стали помещается между полюсами постоянного магнита 1 в поле электромагнита 2 (между полюсами n и m ). Пластинка 3 укрепляется вместе с маленьким зеркальцем на бронзовой ленточке. Измеряемый переменный ток, проходя по обмотке 5 электромагнита 2 , создаёт переменное магнитное поле, накладывающееся на постоянное поле постоянного магнита 1 . Результирующее магнитное поле меняет своё направление с частотой переменного тока и вызывает колебания пластинки 3 ; при этом чёткое изображение на шкале 7 световой щели 6 размывается в световую полоску. Ширина полоски пропорциональна силе переменного тока в обмотке электромагнита 2 . Чувствительность вибрационного Г. получается максимальной, когда частота собственных колебаний подвижной части Г. равна частоте переменного тока, поэтому все вибрационные Г. имеют приспособления для изменения частоты собственных колебаний в целях настройки подвижной части в резонанс с исследуемым переменным током. Вибрационные Г. изготовляются для работы при частотах не свыше 5 кгц .

  Термогальванометр — Г. переменного тока с термопреобразователем, имеющий механизм магнитоэлектрического Г. с подвижной рамкой в виде одного витка. Половины этого витка выполнены из различных металлов и образуют термопару . Вблизи одного из спаев расположен нагреватель, к которому подводят измеряемый переменный ток. Возникающий в рамке термоток отклоняет её от нулевого положения. Этот Г. может применяться для работы при частотах свыше 5 кгц .

  Основной характеристикой Г. является чувствительность или величина, ей обратная, — постоянная Г. Современные Г. постоянного тока серийного производства позволяют обнаруживать токи силой около 5·10-11а и напряжения порядка 5·10-8 в . Постоянные вибрационных Г. переменного тока имеют порядок 1·10-1 а /деление .

  Лит.: Черданцева З. В., Электрические измерения, 3 изд., М. — Л., 1933; Карандеев К. Б., Гальванометры постоянного тока, Львов, 1957; Арутюнов В. О., Электрические измерительные приборы и измерения, М., 1958.

  Н. Г. Вострокнутов .

Большая Советская Энциклопедия (ГА) - i008-pictures-001-294859260.jpg

Рис. 3. Вибрационный гальванометр: 1 — постоянный магнит; 2 — электромагнит; 3 — подвижная пластинка; 4 — бронзовая ленточка; 5 — обмотка для измеряемого тока; 6 — щель оптической системы; 7 — шкала.

Большая Советская Энциклопедия (ГА) - i010-001-267329232.jpg

Рис. 1. Рамочный гальванометр: 1 — постоянный магнит; 2 — рамка; 3 — стрелка-указатель; 4 — выводы рамки; 5 — шкала.

Большая Советская Энциклопедия (ГА) - i010-001-270389846.jpg

Рис. 2. Зеркальный гальванометр: 1 — осветитель (лампа); 2 — гальванометр; 3 — зеркальце; 4 — шкала.

Гальванопластика

Гальванопла'стика (от гальвано .. . и греч. plastike — ваяние), получение точных металлических копий методом электролитического осаждения металла на металлическом или неметаллическом оригинале. См. Гальванотехника .

Гальваноскоп

Гальваноско'п (от гальвано ... и греч. skopéo — смотрю) простейший стрелочный прибор для обнаружения тока в цепи и определения его направления, прообраз гальванометра .

Гальваностегия

Гальваносте'гия (от гальвано .. . и греч. stégo — покрываю), нанесение металлических покрытий на поверхность металличческих изделий методом электролитического осаждения. См. Гальванотехника .

Гальваностереотипия

Гальваностереоти'пия (от гальвано .. . и стереотипия ), способ изготовления копий форм высокой печати (стереотипов) методом гальванопластики . Г. впервые в мире (1839) была применена в Экспедиции заготовления государственных бумаг в Петербурге для размножения печатных форм. Она включает: матрицирование, собственно электролитическое осаждение металла (обычно меди) на матрицу для получения печатной формы (когда осаждаемый слой металла достигает нужной толщины — 0,25—0,30 мм , его отделяют от матрицы) и отделку. Г. даёт более точное воспроизведение оригинальной (исходной) формы, чем обычный литой стереотип. Износоустойчивость медных гальваностереотипов — до 200—250 тыс. оттисков (цинковых —25—30 тыс. оттисков), а после дополнительного покрытия их тонким слоем железа или никеля — до миллиона оттисков. Гальваностереотипы применяются преимущественно для печатания книг и журналов с большим количеством иллюстраций, а также многотиражных цветных репродукций. См. также Гальванотехника .

Гальванотаксис

Гальванота'ксис (от гальвано ... и греч. táxis — расположение, порядок), активное движение животных (инфузории и др растительных организмов (вольвокс и др.), а также микробов (кишечная палочка и др.) и клеточных органелл (пластид ориентированное электрическим током, проявляется в водной среде или в почве в зависимости от плотности тока, его напряжения, характера растворённых в воде веществ и реакции среды организмы могут направляться к аноду (положительный Г.) или к катоду (отрицательный Г.). Основой Г. считают хемотаксис   на сдвиг концентрации  катионов и анионов, возникающий под влиянием электрического тока.

Гальванотерапия

Гальванотерапи'я , физиотерапевтический метод, то же, что гальванизация .

Гальванотехника

Гальваноте'хника , область прикладной электрохимии , охватывающая процессы электролитического осаждения металлов на поверхность металлических и неметаллических изделий. Г. включает: гальваностегию — получение на поверхности изделий прочно сцепленных с ней тонких металлических покрытий и гальванопластику — получение легко отделяющихся, относительно толстых, точных копий с различных предметов, т. н. матриц. Открытие и техническая разработка Г. принадлежат русскому учёному Б. С. Якоби , о чём он доложил 5 октября 1838 на заседании Петербургской АН.

  Г. основана на явлении электрокристаллизации — осаждении на катоде (покрываемом изделии в гальваностегии или матрице в гальванопластике) положительно заряженных ионов металлов из водных растворов их соединений при пропускании через раствор постоянного электрического тока (см. Электролиз ). Количественно гальванотехнические процессы регулируются по законам Фарадея с учётом побочных процессов, которые сводятся чаще всего к выделению на поверхности покрываемых изделий наряду с металлом водорода; качественно — типом и составом электролита, режимом электролиза, т. е. плотностью тока, а также температурой и интенсивностью перемешивания. Различают электролиты на основе простых или комплексных соединений. Первые значительно проще, дешевле и при интенсивном перемешивании (чаще воздушном) допускают применение высоких плотностей тока, что ускоряет процесс электролиза. Так, например, в гальваностегии при покрытии изделий простой конфигурации электролит на основе сернокислого цинка в присутствии коллоидных добавок допускает плотность тока до 300 а/м2 , а при интенсивном воздушном перемешивании — до 30 ка/м2 . В гальванопластике растворы простых солей, чаще сернокислых, обычно применяют без введения каких-либо органических добавок, т. к. в толстых слоях эти добавки отрицательно сказываются на механических свойствах полученных копий. Применяемая плотность тока ниже, чем в гальваностегии; в железных гальванопластических ваннах она не превышает 10—30 а/м2 , в то время как при железнении (гальваностегия) плотность тока достигает 2000—4000 а/м2 . Гальванические покрытия должны иметь мелкокристаллическую структуру и равномерную толщину на различных участках покрываемых изделий — выступах и углублениях. Это требование имеет в гальваностегии особенно важное значение при покрытии изделий сложной конфигурации. В этом случае используют электролиты на основе комплексных соединений или электролиты на основе простых солей с добавками поверхностно-активных веществ. Примером благоприятного влияния поверхностно-активных веществ на структуру покрытия может служить процесс осаждения олова из сернокислого оловянного электролита; без добавок поверхностно-активных веществ на поверхности покрываемых изделий выделяются изолированные кристаллы, напоминающие ёлочную мишуру и не представляющие никакой ценности как покрытие. При введении в электролит фенола , крезола или др. соединения ароматического ряда вместе с небольшим количеством коллоида (клей, желатина) образуется плотное, прочно сцепленное покрытие с вполне удовлетворительной структурой. Из щелочных оловянных электролитов, в которых олово находится в виде отрицательного комплексного иона (SnO3 )4- , при температуре 65—70° С без каких-либо поверхностно-активных веществ получаются хорошо сцепленные мелкокристаллические покрытия. Причина такого различия в поведении кислых и щелочных электролитов заключается в том, что в первых простые ионы двухвалентного олова в отсутствие поверхностно-активных веществ разряжаются без сколько-нибудь заметного торможения (поляризации), а в щелочных электролитах олово находится в виде комплексных ионов, разряжающихся со значительным торможением. Для цинкования изделий сложной формы применяют щёлочно-цианистые электролиты или др. комплексные соли цинка. Для кадмирования изделий применяются, как правило, цианистые электролиты. То же можно сказать про серебрение, золочение, латунирование.

112
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело