Выбери любимый жанр

Большая Советская Энциклопедия (ГА) - Большая Советская Энциклопедия "БСЭ" - Страница 49


Перейти на страницу:
Изменить размер шрифта:

49

  Всё большее применение на отечественных газовых промыслах получают жалюзийные Г. с., позволяющие отделить жидкость в виде плёнки, что повышает эффективность жалюзийных сепараторов до 95—97%. См. также Газов очистка .

  Лит.: Разработка и эксплуатация нефтяных и газовых месторождений, 2 изд., М., 1965.

  Э. Б. Бухгалтер.

Газовый термометр

Га'зовый те'рмометр, прибор для измерения температуры, действие которого основано на зависимости давления или объёма идеального газа от температуры. Чаще всего применяют Г. т. постоянного объёма (рис. ), который представляет собой заполненный газом баллон 1 неизменного объёма, соединённый тонкой трубкой 2 с устройством 3 для измерения давления. В таком Г. т. изменение температуры газа в баллоне пропорционально изменению давления. Г. т. измеряют температуры в интервале от ~2К до 1300 К. Предельно достижимая точность Г. т. в зависимости от измеряемой температуры 3·10-3 — 2·10-2град. Г. т. такой высокой точности — сложное устройство; при измерении им температуры учитывают: отклонения свойств газа, заполняющего прибор, от свойств идеального газа; изменения объёма баллона с изменением температуры; наличие в газе примесей, особенно конденсирующихся; сорбцию и десорбцию газа стенками баллона; диффузию газа сквозь стенки, а также распределение температуры вдоль соединительной трубки.

  Температурная шкала Г. т. совпадает С термодинамической температурной шкалой, и Г. т. применяется в качестве первичного термометрического прибора (см. Температурные шкалы ). При помощи Г. т. определены температуры постоянных точек (реперных точек) Международной практической температурной шкалы .

  Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954.

  Д. Н. Астров.

Большая Советская Энциклопедия (ГА) - i009-001-202918888.jpg

Рис. к ст. Газовый термометр.

Газовый фактор

Га'зовый фа'ктор, отношение полученного из месторождения через скважину количества газа (в м3 ), приведённого к атмосферному давлению и температуре 20°С, к количеству добытой за то же время нефти (в т или м3 ) при том же давлении и температуре. Г. ф. зависит от соотношения газа и нефти в пласте, от физических и геологических свойств пласта, от характера и темпа эксплуатации, от давления в пласте и т.д. Г. ф. является важнейшим показателем расхода пластовой энергии и определения газовых ресурсов нефтяного месторождения.

Газовый якорь

Га'зовый я'корь, устройство для отделения свободного газа, содержащегося в перекачиваемой жидкости, с целью повышения кпд насоса. Широкое применение Г. я. нашёл в нефтяной промышленности при глубиннонасосной эксплуатации месторождений. Существует 7 основных типов Г. я., действие которых основано на повороте потока, разделении потока на части, объединении пузырей газа, перепаде давления и т. д.

  Лит.: Адонин А. Н., Процессы глубиннонасосной нефтедобычи, М., 1964.

Газогенератор (в ракетной технике)

Газогенера'тор, жидкостного ракетного двигателя, агрегат, в котором за счёт сгорания или разложения (термического, каталитического и др.) топлива или его компонентов вырабатывается горячий газ (температура 200—900 °С), служащий рабочим телом для привода турбонасосного агрегата, наддува топливных баков, работы системы управления и др. В Г. чаще всего совместно используются компоненты основного топлива при значениях коэффициента избытка окислительных элементов, отличных от единицы. Иногда в Г. разлагается один из компонентов основного топлива (окислитель или горючее), например несимметричный диметилгидразин. Могут применяться и вспомогательные ракетные топлива. В зависимости от состава вырабатываемого газа различают восстановительный или окислительный Г. Основные элементы Г. — смесительная головка и корпус.

Газогенератор (в технике)

Газогенера'тор , аппарат для термической переработки твёрдых и жидких топлив в горючие газы, осуществляемой в присутствии воздуха, свободного или связанного кислорода (водяных паров). Получаемые в Г. газы называются генераторными. Горение твёрдого топлива в Г. в отличие от любой топки осуществляется в большом слое и характеризуется поступлением количества воздуха, недостаточного для полного сжигания топлива (например, при работе на паровоздушном дутье в Г. подаётся 33—35% воздуха от теоретически необходимого). Образующиеся в Г. газы содержат продукты полного горения топлива (углекислый газ, вода) и продукты их восстановления, неполного горения и пирогенетического разложения топлива (угарный газ, водород, метан, углерод). В генераторные газы переходит также азот воздуха. Процесс, происходящий в Г., называется газификацией топлива .

  Г. обычно представляет собой шахту, внутренние стенки которой выложены огнеупорным материалом. Сверху этой шахты загружается топливо, а снизу подаётся дутьё. Слой топлива поддерживается колосниковой решёткой. Процессы образования газов в слое топлива Г. показаны на рис. 1. Подаваемое в Г. дутьё вначале проходит через зону золы и шлака 0, где оно немного подогревается, а далее поступает в раскалённый слой топлива (окислительная зона, или зона горения 1), где кислород дутья вступает в реакцию с горючими элементами топлива. Образовавшиеся продукты горения, поднимаясь вверх по Г. и встречаясь с раскалённым топливом (зона газификации II), восстанавливаются до окиси углерода и водорода. При дальнейшем движении вверх сильно нагретых продуктов восстановления происходит термическое разложение топлива (зона разложения топлива III) и продукты восстановления обогащаются продуктами разложения (газами, смоляными и водяными парами). В результате разложения топлива образуются вначале полукокс, а затем и кокс, на поверхности которых при их опускании вниз происходит восстановление продуктов горения (зона II). При опускании ещё ниже происходит горение кокса (зона 1). В верхней части Г. происходит сушка топлива теплом поднимающихся газов и паров.

  В зависимости от того, в каком виде подаётся в Г. кислород дутья, состав генераторных газов изменяется. При подаче в Г. одного воздушного дутья получается воздушный газ, теплота горения которого в зависимости от перерабатываемого топлива колеблется от 3,8 до 4,5 Мдж/м3 (900—1080 ккал/м3 ). Применяя дутьё, обогащенное кислородом, получают т. н. парокислородный газ (содержащий меньшее количество азота, чем воздушный газ), теплота горения которого может быть доведена до 5—8,8 Мдж {м3 (1200—2100 ккал/м3 ).

  При работе Г. на воздухе с умеренной добавкой к нему водяных паров получается смешанный газ, теплота сгорания которого (в зависимости от исходного топлива) колеблется от 5 до 6,7 Мдж/м3 (1200—1600 ккал/м3 ). И, наконец, при подаче в раскалённый слой топлива Г. водяного пара получают водяной газ с теплотой сгорания от 10 до 13,4 Мдж/м3 (2400—3200 ккал/м3 .

  Несмотря на то, что идея Г. была выдвинута в конце 30-х гг. 19 в. в Германии (Бишофом в 1839 и Эбельманом в 1840), их промышленное применение началось после того, как Ф. Сименсом (1861) был предложен регенеративный принцип отопления заводских печей, позволивший эффективно применять генераторный газ. Изобретателями первого промышленного Г. были братья Ф. и В. Сименс. Их конструкция Г. получила повсеместное распространение и просуществовала в течение 40—50 лет. Только в начале 20 в. появились более совершенные конструкции.

49
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело