Выбери любимый жанр

Большая Советская Энциклопедия (ЖЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 18


Перейти на страницу:
Изменить размер шрифта:

18

Лит.: Голобуцкий В. А., М. Железняк, М., 1960.

Железняков Анатолий Григорьевич

Железняко'в Анатолий Григорьевич [20.4(2.5).1895, с. Федоскино, ныне Московской области, — 26.7.1919, ныне г. Верховцево Днепропетровской области], герой Гражданской войны 1918—20. Родился в семье крестьянина, был рабочим, кочегаром на торговых судах. С 1915 на Балтийском флоте. В 1917 принадлежал к группе анархистов, поддерживавших большевиков. Участвовал в Октябрьском вооруженном восстании и штурме Зимнего дворца, был делегатом 2-го Всероссийского съезда Советов. В январе 1918, будучи начальником караула Таврического дворца, предложил контрреволюционным депутатам Учредительного собрания покинуть дворец. Участвовал в Гражданской войне на Украине: в январе 1918 в должности комиссара Дунайской флотилии против войск Центральной рады и румынских интервентов, в марте 1918 против австро-германских оккупантов как начальник Бирзульского укрепленного района. Затем командовал полком 16-й стрелковой дивизии, был на подпольной работе в Одессе. С мая 1919 командовал бронепоездом в боях против григорьевцев, а позже в боях против деникинцев в составе 14-й армии. Был смертельно ранен в бою у станции Верховцево. Похоронен в Москве на Ваганьковском кладбище.

Большая Советская Энциклопедия (ЖЕ) - i008-pictures-001-295659557.jpg

А. Г. Железняков.

Железо

Желе'зо (латинское Ferrum), Fe, химический элемент VIII группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо-белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54Fe (5,84%), 56Fe (91,68%), 57Fe (2,17%) и 58Fe (0,31%).

  Историческая справка. Ж. было известно ещё в доисторические времена, однако широкое применение нашло значительно позже, т. к. в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определённом уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Ж., о чём свидетельствуют его названия на языках древних народов: древнеегипетское «бени-пет» означает «небесное железо»; древнегреческое sideros связывают с латинским sidus (родительный падеж sideris) — звезда, небесное тело. В хеттских текстах 14 в. до н. э. упоминается о Ж. как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, французское fer, итальянское ferro).

  Способ получения Ж. из руд был изобретён в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Ж. распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришёл железный век. Гомер (в 23-й песне «Илиады») рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Ж. получали по сыродутному процессу. Железную руду восстанавливали древесным углём в горне (см. Восстановление металлов), устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления — крицу ударами молота отделяли от шлака и из неё выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Ж. науглероживалась, т. е. получался чугун; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское железо» — английское pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причём такой двухстадийный процесс (см. Кричный передел) оказался более выгодным, чем сыродутный. В 12—13 вв. кричный способ был уже широко распространён. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь («домницу»), а затем и в доменную печь. В середине 18 в. в Европе начал применяться тигельный процесс получения стали, который был известен на территории Сирии ещё в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в Ж. на поду пламенной отражательной печи (см. Пудлингование). Промышленный переворот 18 — начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Ж. и его сплавах. Однако все существовавшие способы производства Ж. не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

  Распространённость в природе. По содержанию в литосфере (4,65% по массе) Ж. занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Ж. принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений (см. Железные руды). Ж. — металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Ж. накапливается во многих морских и континентальных осадках, образуя осадочные руды.

  Важную роль в геохимии Ж. играют окислительно-восстановительные реакции — переход 2-валентного Ж. в 3-валентное и обратно. В биосфере при наличии органических веществ Fe3+ восстанавливается до Fe2+ и легко мигрирует, а при встрече с кислородом воздуха Fe2+ окисляется, образуя скопления гидроокисей 3-валентного Ж. Широко распространённые соединения 3-валентного Ж. имеют красный, жёлтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование — «красно-цветная формация» (красные и бурые суглинки и глины, жёлтые пески и т. д.).

  Физические и химические свойства. Значение Ж. в современной технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддаётся прокатке, штамповке и волочению. Способность растворять углерод и др. элементы служит основой для получения разнообразных железных сплавов.

  Ж. может существовать в виде двух кристаллических решёток: a- и g- объёмноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910 °С устойчиво a - Fe с ОЦК-решёткой (а = 2,86645

Большая Советская Энциклопедия (ЖЕ) - i-images-167948454.png
 при 20°С). Между 910°С и 1400°С устойчива g-модификация с ГЦК-решёткой (а = 3,64
Большая Советская Энциклопедия (ЖЕ) - i-images-176221748.png
). Выше 1400°С вновь образуется ОЦК-решётка d-Fe (а = 2,94
Большая Советская Энциклопедия (ЖЕ) - i-images-138512874.png
), устойчивая до температуры плавления (1539°С). a - Fe ферромагнитно вплоть до 769°С (точка Кюри). Модификация g-Fe и d-Fe парамагнитны.

  Полиморфные превращения Ж. и стали при нагревании и охлаждении открыл в 1868 Д. К. Чернов. Углерод образует с Ж. твёрдые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77

Большая Советская Энциклопедия (ЖЕ) - i-images-109687338.png
), размещаются в междоузлиях кристаллической решётки металла, состоящей из более крупных атомов (атомный радиус Fe 1,26
Большая Советская Энциклопедия (ЖЕ) - i-images-117717627.png
). Твёрдый раствор углерода в g-Fe наз. аустенитом, а в (a-Fe— ферритом. Насыщенный твёрдый раствор углерода в g- Fe содержит 2,0% С по массе при 1130°С; a-Fe растворяет всего 0,02— 0,04%С при 723°С, и менее 0,01% при комнатной температуре. Поэтому при закалкеаустенита образуется мартенсит — пересыщенный твёрдый раствор углерода в a- Fe, очень твёрдый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твёрдости и пластичности (см. Железо - углеродистые сплавы.Термическая обработка металлов).

18
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело