Выбери любимый жанр

Большая Советская Энциклопедия (ЗН) - Большая Советская Энциклопедия "БСЭ" - Страница 2


Перейти на страницу:
Изменить размер шрифта:

2

«Знак почёта»

«Знак почёта» орден, см. Ордена СССР.

Знак стоимости

Знак сто'имости, см. в ст. Деньги.

Знак товарный

Знак това'рный, см. Товарный знак.

Знак языковой

Знак языково'й, любая единица языка (морфема, слово, словосочетание, предложение), служащая для обозначения предметов или явлений действительности. З. я. двусторонен. Он состоит из означающего, образуемого звуками речи (точнее, фонемами), и означаемого, создаваемого смысловым содержанием З. я. Связь между сторонами знака произвольна, поскольку выбор звуковой формы обычно не зависит от свойств обозначаемого предмета. Особенностью З. я. является его асимметричность, т. с. способность одного означающего передавать разные значения (полисемия, омонимия) и стремление означаемого З. я. быть выраженным разными означающими (гетерофония, омосемия). Асимметрия структуры З. я. определяет способность языка к развитию.

  З. я. иногда подразделяют на полные и частичные. Под полным З. я. понимается высказывание (обычно предложение), непосредственно отнесённое к обозначаемой ситуации (референту, денотату З. я.). Под частичным знаком подразумевается слово или морфема, актуализируемые только в составе полного знака. Наличие в языке частичных знаков разной степени сложности, а также членимость означающего и означаемого простейшего З. я. на односторонние (незнаковые) единицы содержания (компоненты значения) и выражения (фонемы) обеспечивают экономность языковой системы, позволяя создавать из конечного числа простых единиц бесконечно большое количество сообщений. См. Знаковая теория языка.

  Лит.: Соссюр Ф. де, Курс общей лингвистики, пер. с франц., М., 1933; Карцевский С., Об асимметричном дуализме лингвистического знака, в кн.: 3вегинцев В. А., История языкознания XIX—XX веков в очерках и извлечениях, ч. 2, М., 1965; Якобсон Р., В поисках сущности языка, в кн.: Сборник переводов по вопросам информационной теории и практики, в. 16, М., 1970; Общее языкознание, М., 1970, гл. 2; Материалы к конференции «Язык как знаковая система особого рода», М., 1967.

  Н. А. Арутюнова.

Знаки

Зна'ки в нотном письме, различные графические знаки, применяемые для записи музыки. См. Нотное письмо. Ноты, Ключ, Бемоль, Бекари др.

Знаки астрономические

Зна'ки астрономи'ческие, условные обозначения Солнца, Луны, планет и др. небесных тел, а также зодиакальных созвездий, планетных конфигураций, фаз Луны и пр., применяемые в астрономической литературе и календарях. Некоторые З. а. используются для обозначения дней недели, часов.

  Большинство З. а. возникло в глубокой древности и представляет собой схематические изображения небесных тел или символических фигур созвездий.

Большая Советская Энциклопедия (ЗН) - i009-001-227785145.jpg

Знаки лунных фаз.

Большая Советская Энциклопедия (ЗН) - i009-001-239948276.jpg

Знаки зодиака и месяцев.

Большая Советская Энциклопедия (ЗН) - i010-001-248706750.jpg

Знаки небесных светил и дней недели.

Большая Советская Энциклопедия (ЗН) - i010-001-264910231.jpg

Знаки аспектов (взаимного расположения светил).

Знаки геодезические

Зна'ки геодези'ческие, см. Геодезические знаки.

Знаки математические

Зна'ки математи'ческие, условные обозначения, предназначенные для записи математических понятий, предложений и выкладок. Например,

Большая Советская Энциклопедия (ЗН) - i-images-171693417.png

(квадратный корень из двух), 3 > 2 (три больше двух) и т.п.

  Развитие математической символики было тесно связано с общим развитием понятий и методов математики. Первыми З. м. были знаки для изображения чисел — цифры, возникновение которых, по-видимому, предшествовало письменности. Наиболее древние системы нумерации — вавилонская и египетская — появились ещё за 31/2 тысячелетия до н. э.

  Первые З. м. для произвольных величин появились много позднее (начиная с 5—4 вв. до н. э.) в Греции. Величины (площади, объёмы, углы) изображались в виде отрезков, а произведение двух произвольных однородных величин — в виде прямоугольника, построенного на соответствующих отрезках. В «Началах» Евклида (3 в. до н. э.) величины обозначаются двумя буквами — начальной и конечной буквами соответствующего отрезка, а иногда и одной. У Архимеда (3 в. до нашей эры) последний способ становится обычным. Подобное обозначение содержало в себе возможности развития буквенного исчисления. Однако в классической античной математике буквенного исчисления создано не было.

  Начатки буквенного изображения и исчисления возникают в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы. Диофант (вероятно, 3 в.) записывал неизвестную (х) и её степени следующими знаками:

Большая Советская Энциклопедия (ЗН) - i-images-156693855.png

  [

Большая Советская Энциклопедия (ЗН) - i-images-114814105.png
— от греческого термина dunamiV (dynamis — сила), обозначавшего квадрат неизвестной,
Большая Советская Энциклопедия (ЗН) - i-images-127747869.png
 — от греческого cuboV (k_ybos) — куб]. Справа от неизвестной или её степеней Диофант писал коэффициенты, например 3х5 изображалось

Большая Советская Энциклопедия (ЗН) - i-images-160983533.png

(где

Большая Советская Энциклопедия (ЗН) - i-images-197408265.png
 = 3). При сложении Диофант приписывал слагаемые друг к другу, для вычитания употреблял специальный знак
Большая Советская Энциклопедия (ЗН) - i-images-162421667.png
; равенство Диофант обозначал буквой i [от греческого isoV (isos) — равный]. Например, уравнение

(x3 + 8x) — (5x2 + 1) = х

  у Диофанта записалось бы так:

Большая Советская Энциклопедия (ЗН) - i-images-186466502.jpg

  (здесь

Большая Советская Энциклопедия (ЗН) - i-images-101470896.png

означает, что единица

Большая Советская Энциклопедия (ЗН) - i-images-177841647.png
 не имеет множителя в виде степени неизвестного).

  Несколько веков спустя индийцы ввели различные З. м. для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение

  3х2 + 10x — 8 = x2 + 1

  в записи Брахмагупты (7 в.) имело бы вид:

  йа ва 3 йа 10 ру 8

  йа ва 1 йа 0 ру 1

  (йа — от йават — тават — неизвестное, ва — от варга — квадратное число, ру — от рупа — монета рупия — свободный член, точка над числом означает вычитаемое число).

  Создание современной алгебраической символики относится к 14—17 вв.; оно определялось успехами практической арифметики и учения об уравнениях. В различных странах стихийно появляются З. м. для некоторых действий и для степеней неизвестной величины. Проходят многие десятилетия и даже века, прежде чем вырабатывается тот или иной удобный символ. Так, в конце 15 и. Н. Шюке и Л. Пачоли употребляли знаки сложения и вычитания

Большая Советская Энциклопедия (ЗН) - i-images-161175354.png
2
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело