Выбери любимый жанр

Большая Советская Энциклопедия (ИО) - Большая Советская Энциклопедия "БСЭ" - Страница 17


Перейти на страницу:
Изменить размер шрифта:

17

  Лит.: Мейер Дж., Эриксон А., Девис Дж., Ионное легирование полупроводников (кремний, германий), пер. с англ., М., [в печати]; Легирование полупроводников ионным внедрением, пер. с англ., М., 1971.

  Ю. В. Мартыненко.

Ионное произведение воды

Ио'нное произведе'ние воды', произведение концентраций (точнее активностей) ионов водорода Н+ и ионов гидроксила OH в воде или в водных растворах: KB = [Н+] [ОН]. См. Водородный показатель.

Ионно-сорбционный насос

Ио'нно-сорбцио'нный насо'с, вакуумный насос, в котором химически активные газы удаляются за счёт сорбции их геттерами, а инертные газы — в результате интенсивной ионизации в виде ионов под действием электрического поля. С помощью И.-с. н. достигают разрежения 10-7н/м2 (10-9мм рт. ст.).

Ионно-электронная эмиссия

Ио'нно-электро'нная эми'ссия, испускание электронов поверхностью твёрдого тела в вакуум под действием ионной бомбардировки. Явление И.-э. э. используется в электронных умножителях, электронных микроскопах, а также при изучении физики плазмы, структуры твёрдых тел и дефектов этой структуры.

  Лит. см. при ст. Электронная эмиссия.

Ионные кристаллы

Ио'нные криста'ллы, кристаллы, в которых сцепление частиц обусловлено преимущественно ионными химическими связями (см. Ионная связь). И. к. могут состоять как из одноатомных, так и из многоатомных ионов. Примеры И. к. первого типа — кристаллы галогенидов щелочных и щёлочноземельных металлов, образованные положительно заряженными ионами металла и отрицательно заряженными ионами галогена (NaCl, CsCl, CaF2, см. рис.). Примеры И. к. второго типа — нитраты, сульфаты, фосфаты, силикаты и др. соли этих же металлов, где отрицательные ионы кислотных остатков состоят из нескольких атомов. Кислотные остатки могут объединяться в длинные цепи, слои, а также образовывать трёхмерный каркас, в пустотах которого размещаются ионы металла. Такие образования встречаются, например, в кристаллических структурах силикатов (см. также Кристаллохимия).

  П. М. Зоркий.

Большая Советская Энциклопедия (ИО) - i009-001-241203506.jpg

Строение некоторых ионных кристаллов.

Ионные приборы

Ио'нные прибо'ры, газоразрядные приборы, электровакуумные приборы, действие которых основано на использовании различных видов электрических разрядов в газе (инертных газах, водороде) или парах металла. Простейший И. п. представляет собой диод, баллон которого наполнен инертным газом или парами ртути. Свойства И. п. определяются взаимодействием электронного потока с газовой средой и электрическим полем между электродами (анодом и термоэлектронным или холодным катодом). При движении от катода к аноду электроны, соударяясь с атомами и молекулами газа, ионизируют их; в пространстве между электродами И. п. образуются электроны и положительно заряженные ионы. Вследствие компенсации пространственного заряда электронов положительными ионами в И. п. можно получить очень большие силы токов при небольшой разности потенциалов (падении напряжения) между электродами, что недостижимо в других типах электровакуумных приборов. Для управления моментом возникновения разряда в И. п. применяют дополнительные электроды (сетки, вспомогательные аноды и др.). Электрические разряды в большинстве случаев сопровождаются излучением света (свечением), характерного для данного газа спектрального состава. Насчитывается более 50 классов И. п., работа которых основана на использовании отдельных свойств того или иного вида разряда, главным образом тлеющего разряда, дугового разряда, искрового разряда, коронного разряда.

  Приборы тлеющего разряда (сигнальные лампы, стабилитроны, тиратроны с холодным катодом, декатроны, цифровые индикаторные лампы, матричные индикаторные панели и др.) составляют наиболее многочисленную и важную группу И. п. Давление газа в них — десятки н/м2, сила тока не превышает несколько десятков ма; долговечность — десятки тыс. часов. Они имеют малые габариты и массу. Однако быстродействие таких приборов не превышает сотен мксек (рабочая частота — десятков кгц).

  В приборах дугового разряда, главным образом с подогревным катодом, давление газа составляет десятые доли н/м2. Такие приборы (газотроны, тиратроны, клипперные приборы, таситроны и др.) имеют низкое внутреннее сопротивление (десятки ом), падение напряжения в них 10—20 в (в импульсном режиме — 100—200 в). Долговечность их ограничена постепенным разрушением катода и понижением давления (жестчением) наполняющего газа. Для увеличения долговечности приборов используют жидкий ртутный катод (ртутные вентили, игнитроны). Приборы с таким катодом способны пропускать ток силой до нескольких тыс. ампер и выдерживать обратное напряжение до сотен кв. Известны приборы дугового разряда с самоподогревающимся катодом — аркатроны.

 В приборах искрового разряда при подаче между двумя металлическими холодными электродами напряжения, превышающего определённое значение (напряжение пробоя), возникает электрическая искра в виде ярко светящегося тонкого канала, обычно сложным образом изогнутого и разветвленного. Давление газа в них десятки или несколько сотен кн/м2. Часто применяются смеси инертных газов с кислородом, углекислым газом и т. п. Время формирования искрового разряда очень мало — доли нсек. Свойство разрядного промежутка почти мгновенно изменять свою электропроводность в значительных пределах (электрическое сопротивление промежутка изменяется от долей ома до сотен Мом) используется в искровых разрядниках — неуправляемых и управляемых (тригатронах).

  В приборах коронного разряда (стабилитронах и др.) ионизация газа происходит в области наибольшей напряжённости поля (область коронирования) при необходимом условии — резкой неоднородности электрического поля между двумя электродами (например, при коаксиальной форме электродов). Давление газа в них — сотни н/м2 и выше. Зависимость силы тока от напряжения, приложенного к электродам, представляет собой прямую, почти параллельную оси токов.

  Отдельную группу И. п. составляют: газоразрядные источники света, большинство из которых — приборы дугового разряда, работающие при высоком давлении газа (несколько сотен кн/м2); лампы высокой интенсивности излучения; эритемная лампа, дающая сильное ультрафиолетовое излучение; газовые лазеры (атомарные, ионные, молекулярные), являющиеся источниками когерентных электромагнитных колебаний светового диапазона волн, и т. д.

  Известна также отдельная группа И. п. (аттенюаторы, фазовращатели, разрядники и др.), работа которых основана па взаимодействии сверхвысокочастотного поля и ионизированной области газа. О применении И. п. с различными видами разрядов см. в соответствующих статьях по конкретным классам И. п.

  Лит.: Капцов Н. А., Электрические явления в газах и вакууме, 2 изд., М.—Л., 1950; Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960; Генис А. А., Горнштейн И. Л., Пугач А. В., Приборы тлеющего разряда, К., 1963; Черепанов В. П., Коневских В. М., Львов В. Н., Газоразрядные источники шумов, [М.], 1968; Нил Д. М., Конструирование аппаратуры на ионных приборах с холодным катодом, пер. с англ., М., 1968; Черепанов В. П., Григорьев О. П., Вакуумные и газоразрядные вентили, М., 1969.

17
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело