Большая Советская Энциклопедия (СИ) - Большая Советская Энциклопедия "БСЭ" - Страница 73
- Предыдущая
- 73/170
- Следующая
С. к. проявляется не только в их структуре и свойствах в реальном трёхмерном пространстве, но также и при описании энергетического спектра электронов кристалла в импульсном пространстве (см. Твёрдое тело), при анализе процессов дифракции рентгеновских лучей в кристаллах с помощью пространства обратных длин и т. п.
Группа симметрии кристаллов. Кристаллу может быть присуща не одна, а несколько операций симметрии. Так, кристалл кварца (рис. 1, а) совмещается с собой нс только при повороте на 120° вокруг оси 3 (операция g1), ной при повороте вокруг оси 3 на 240° (операция g2), а также при поворотах на 180° вокруг осей 2x, 2y, 2w (операции g3, g4 и g5). Каждой операции симметрии может быть сопоставлен геометрический образ — элемент симметрии — прямая, плоскость или точка, относительно которой производится данная операция. Например, ось 3 или оси 2x, 2y, 2w являются осями симметрии, плоскость m (рис. 1, б) — плоскостью зеркальной симметрии и т. п. Совокупность операций симметрии [g1,..., gn] данного кристалла образует группу симметрии G в смысле математической теории групп. Последовательное проведение двух операций симметрии также является операцией симметрии. Всегда существует операция идентичности g, ничего не изменяющая в кристалле, называется отождествлением, геометрически соответствующая неподвижности объекта или повороту его на 360° вокруг любой оси. Число операций, образующих группу G, называется порядком группы.
Группы симметрии классифицируют: по числу n измерений пространства, в которых они определены; по числу т измерений пространства, в которых объект периодичен (их соответственно обозначают Gmn) и по некоторым другим признакам. Для описания кристаллов используют различные группы симметрии, из которых важнейшими являются пространственные группы симметрии G33, описывающие атомную структуру кристаллов, и точечные группы симметрии G3, описывающие их внешнюю форму. Последние называются также кристаллографическими классами.
Симметрия огранки кристаллов. Операциями точечной симметрии являются: повороты вокруг оси симметрии порядка N на 360°/N (рис. 2, а), отражение в плоскости симметрии (зеркальное отражение, рис. 2, б), инверсия
(симметрия относительно точки, рис. 2, в), инверсионные повороты (комбинация поворота на 360°/N с одновременной инверсией, рис. 2, г). Вместо инверсионных поворотов иногда рассматривают зеркальные повороты . Геометрически возможные сочетания этих операций определяют ту или иную точечную группу (рис. 3), которые изображаются обычно в стереографической проекции. При преобразованиях точечной симметрии по крайней мере одна точка объекта остаётся неподвижной — преобразуется сама в себя. В ней пересекаются все элементы симметрии, и она является центром стереографической проекции.Точечные преобразования симметрии g [x1, x2, x3] =
описываются линейными уравнениями:x'1 = а11х1 + a12x2 + a13x3,
x'2 = a21x1 + a22x2 + a23x3, (2)
x'3 = a31x1 + a32x2 + a33x3,
т. е. матрицей коэффициента (aij). Например, при повороте вокруг хз на угол a = 360°/N матрица коэффициентов имеет вид:
, (3)а при отражении в плоскости x1, x2 имеет вид:
(3a)Поскольку N может быть любым, число групп
бесконечно. Однако в кристаллах ввиду наличия кристаллической решётки возможны только операции и соответственно оси симметрии до 6-го порядка (кроме 5-го), которые обозначаются символами: 1, 2, 3, 4, 6, а также инверсионные оси: (она же центр симметрии), = m (она же плоскость симметрии), . Поэтому количество точечных кристаллографических групп, описывающих внешнюю форму кристаллов, ограничено. Эти 32 группы С. к. приведены в таблице. В международные обозначения точечных групп входят символы основных (порождающих) элементов симметрии, им присущих. Эти группы объединяются по симметрии формы элементарной ячейки (с периодами а, b, с и углами a, b, g) в 7 сингоний кристаллографических — триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую. Принадлежность кристалла к той или иной группе определяется гониометрически (см. Гониометр) или рентгенографически (см. Рентгеновский структурный анализ).Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей. Эти группы называются группами 1-го рода. Группы, содержащие отражения, или инверсионные повороты, описывают кристаллы, в которых есть зеркально равные части (но могут быть и совместимо равные части). Эти группы называются группами 2-го рода. Кристаллы, описываемые группами 1-го рода, могут кристаллизоваться в двух энантиоморфных формах, условно называемых «правой» и «левой», каждая из них не содержит элементов симметрии 2-го рода, но они зеркально равны друг другу (см. Энантиоморфизм, Кварц).
Точечные группы описывают симметрию не только кристаллов, но любых конечных фигур. В живой природе часто наблюдается запрещенная в кристаллографии симметрия с осями 5-го, 7-го порядка и выше. Например, для описания регулярной структуры сферических вирусов (рис. 4), в оболочках которых соблюдаются кристаллографические принципы плотной укладки молекул, оказалась важной икосаэдрическая точечная группа 532.
Симметрия физических свойств. Предельные группы. В отношении макроскопических физических свойств (оптических, электрических, механических и др.), кристаллы ведут себя как однородная анизотропная среда, т. е. дискретность их атомной структуры не проявляется. Однородность означает, что свойства одинаковы в любой точке кристалла, однако при этом многие свойства зависят от направления (см. Анизотропия). Зависимость от направления можно представить в виде функции и построить указательную поверхность данного свойства (рис. 5, см. также ст. Кристаллооптика). Эта функция, которая может быть различной для разных физических свойств кристалла (векторной или тензорной) имеет определённую точечную симметрию, однозначно связанную с группой симметрии огранения кристалла. Она либо совпадает с ней, либо выше её по симметрии (принцип Неймана).
- Предыдущая
- 73/170
- Следующая