Выбери любимый жанр

Большая Советская Энциклопедия (ФЛ) - Большая Советская Энциклопедия "БСЭ" - Страница 26


Перейти на страницу:
Изменить размер шрифта:

26

  Для более детальной характеристики Ф. нужно знать функцию распределения их вероятностей. Вероятность w (x1 ,..., хп ) Ф. некоторых величин x1 ,..., хп из состояния неполного термодинамического равновесия с энтропией S (

Большая Советская Энциклопедия (ФЛ) - i-images-176052151.png
,...,
Большая Советская Энциклопедия (ФЛ) - i-images-142310518.png
) в состояние с энтропией S (x1 ,..., хп ) определяется формулой Больцмана:

w (x1 ,..., хп )/w (

Большая Советская Энциклопедия (ФЛ) - i-images-111039761.png
,...,
Большая Советская Энциклопедия (ФЛ) - i-images-128588112.png
) = exp {S (x1 ,..., хп ) – S (
Большая Советская Энциклопедия (ФЛ) - i-images-196295420.png
,...,
Большая Советская Энциклопедия (ФЛ) - i-images-173704078.png
)}

(поскольку энтропия равна логарифму статистического веса , или термодинамической вероятности состояния). Под энтропией состояния неполного равновесия понимают энтропию вспомогательного равновесного состояния, которое характеризуется такими же средними значениями xi , как и данное неравновесное. Для малых Dxi = xi – xi эта формула переходит в распределение Гаусса:

w (x1 ,..., хп ) = А

Большая Советская Энциклопедия (ФЛ) - i-images-150446699.png
,

где А – константа, определяемая из условия нормировки вероятности к 1.

  Можно найти не только Ф. величин xi , но и корреляции между ними

Большая Советская Энциклопедия (ФЛ) - i-images-170874355.png
, определяющие их взаимное влияние (лишь в случае статистически независимых величин
Большая Советская Энциклопедия (ФЛ) - i-images-105516637.png
); примером могут служить корреляции температуры и давления:
Большая Советская Энциклопедия (ФЛ) - i-images-140326007.png
  (температура связана со средней энергией), объёма и давления:
Большая Советская Энциклопедия (ФЛ) - i-images-146412179.png
. Для физических величин А (х, t ), В (х, t ), зависящих от координат (x ) и времени (t ), вообще говоря, имеют место пространственно-временные корреляции между их Ф. в различных точках пространства в различные моменты времени:

Большая Советская Энциклопедия (ФЛ) - i-images-196134904.png
;

функции F называются пространственно-временными корреляционными (или коррелятивными) функциями и в состоянии статистического равновесия зависят лишь от разностей координат и времени. Функции F для плотности (n ) числа частиц

Большая Советская Энциклопедия (ФЛ) - i-images-180043624.png
 могут быть экспериментально измерены по рассеянию медленных нейтронов или рентгеновских лучей: дважды дифференциальное сечение рассеяния нейтронов определяет фурье-образ пространственно-временной корреляционной функции плотностей частиц в среде.

  Ф. связаны с неравновесными процессами . Такие неравновесные характеристики системы, как кинетические коэффициенты (см. Кинетика физическая ), пропорциональны интегралам по времени от временных корреляционных функций потоков физических величин (формулы Грина – Кубо). Например, электропроводность пропорциональна интегралу от корреляционных функций плотностей токов, коэффициенты теплопроводности, вязкости, диффузии пропорциональны соответственно интегралам от корреляционных функций плотностей потоков тепла, импульса и диффузионного потока.

  В общем случае существует связь между Ф. физических величин и диссипативными свойствами системы при внешнем возмущении. Реакция системы на некоторое возмущение (т. е. соответствующее изменение некоторой физической величины) определяется т. н. обобщённой восприимчивостью, мнимая часть которой пропорциональна фурье-компоненте временной корреляционной функции возмущений, связанных с данным воздействием (флуктуационно-диссипативная теорема).

  Ф. в системах заряженных частиц проявляются как хаотические изменения потенциалов, токов или зарядов; они обусловлены как дискретностью электрического заряда, так и тепловым движением носителей заряда. Эти Ф. являются причиной электрических шумов и определяют предел чувствительности приборов для регистрации слабых электрических сигналов (см. Флуктуации электрические ).

  Ф. можно наблюдать по рассеянию света: случайные изменения плотности среды из-за Ф. вызывают случайные изменения по объёму показателя преломления, и в однородной по составу среде или даже в химически чистом веществе может происходить рассеяние света, как в мутной среде. Это явление особенно заметно в бинарных растворах при температуре, близкой к критической температуре расслаивания, – т. н. критическое рассеяние света. Ф. также очень велики в критической точке равновесия жидкость – пар (см. Критические явления ). Ф. давления проявляются в броуновском движении взвешенных в жидкости (или газе) малых частиц под влиянием нескомпенсированных точно ударов молекул окружающей среды.

  Лит.: Эйнштейн А., Смолуховский М., Брауновское движение. Сб., пер. с нем., М. – Л., 1936; Леонтович М. А., Статистическая физика, М. – Л., 1944; Мюнстер А., Теория флуктуаций, в сборнике: Термодинамика необратимых процессов, пер. с англ., М., 1962; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; Левин М. Л., Рытов С. М., Теория равновесных тепловых флуктуаций в электродинамике, М., 1967. См. также лит. при ст. Статистическая физика .

  Д. Н. Зубарев.

Флуктуации электрические

Флуктуа'ции электри'ческие, хаотические изменения потенциалов, токов и зарядов в электрических цепях и линиях связи. Ф. э. вызываются тепловым движением носителей заряда и др. физическими процессами в веществе, обусловленными дискретной природой электричества (естественные Ф. э.), а также случайными изменениями и нестабильностью характеристик цепей (технические Ф. э.). Ф. э. возникают в пассивных элементах цепей (металлических и неметаллических проводниках), в активных элементах (электронных, ионных и полупроводниковых приборах), а также в атмосфере, в которой происходит распространение радиоволн .

  Тепловые Ф. э. (тепловой шум) обусловлены тепловым движением носителей заряда в проводнике, в результате чего на концах проводника возникает флуктуирующая разность потенциалов. В металлах из-за большой концентрации электронов проводимости и малой длины свободного пробега тепловые скорости электронов во много раз превосходят скорость направленного движения в электрическом поле (дрейфа). Поэтому Ф. э. в металлах зависят от температуры, но не зависят от приложенного напряжения (Найквиста формула ). При комнатной температуре интенсивность тепловых Ф. э. остаётся постоянной до частот ~ 1012гц. Хотя тепловые Ф. э. возникают только в активных сопротивлениях, наличие реактивных элементов (ёмкостей и индуктивностей) может изменить частотный спектр Ф. э. В неметаллических проводниках Ф. э. на низких частотах на несколько порядков превышают тепловые Ф. э. Эти избыточные шумы объясняются медленной случайной перестройкой структуры проводника под действием тока.

  Ф. э. в электровакуумных и ионных приборах связаны главным образом со случайным характером электронной эмиссии с катода (дробовой шум ). Интенсивность дробовых Ф. э. практически постоянна для частот (108 гц и зависит от присутствия остаточных ионов и величины объёмного заряда (см. Дробовой эффект ). Дополнительные источники Ф. э. в этих приборах – вторичная электронная эмиссия с анода и сеток электронных ламп, динодов фотоэлектронных умножителей и т.п., а также случайное перераспределение тока между электродами. В электровакуумных и ионных приборах наблюдаются также медленные Ф. э., связанные с различными процессами на катоде (см. Фликкер-эффект ). В газоразрядных приборах низкого давления Ф. э. возникают из-за теплового движения электронов.

26
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело