Выбери любимый жанр

Большая Советская Энциклопедия (ФЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 101


Перейти на страницу:
Изменить размер шрифта:

101

  Ф. применяют для измерения земного магнитного поля и его вариаций (в частности, при поисках полезных ископаемых, создающих локальные аномалии геомагнитного поля); для измерения магнитных полей Луны, планет, межпланетного пространства; для обнаружения ферромагнитных предметов и частиц в неферромагнитной среде (в частности, в хирургии); в системах контроля за качеством выпускаемой продукции (магнитная дефектоскопия и др.).

  Лит.: Афанасьев Ю. В., Феррозонды, Л., 1969; Афанасьев Ю. В., Студенцов Н. В., Щелкин А. П., Магнитометрические преобразователи, приборы, установки, Л., 1972; Кифер И. И., Испытания ферромагнитных материалов, 3 изд., М., 1969; Чечурина Е. Н., Приборы для измерения магнитных величин, М., 1969.

  И. И. Кифер.

Феррозондовая дефектоскопия

Феррозо'ндовая дефектоскопи'я, метод магнитной дефектоскопии , при котором измерение искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов, осуществляется феррозондами . Ф. д. применяется для обнаружения внутренних дефектов (на глубине до 10, иногда 20 мм ) обычно в изделиях правильной формы.

Ферромагнетизм

Ферромагнети'зм, одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое параллельной ориентацией магнитных моментов атомных носителей магнетизма. Параллельная ориентация магнитных моментов (рис. 1 ) устанавливается при температурах Т ниже критической Q (см. Кюри точка ) и обусловлена положительным значением энергии межэлектронного обменного взаимодействия (см. Магнетизм ). Ферромагнитная упорядоченность магнитных моментов в кристаллах (атомная магнитная структура – коллинеарная или неколлинеарная) непосредственно наблюдается и исследуется методами магнитной нейтронографии . Вещества, в которых установился ферромагнитный порядок атомных магнитных моментов, называют ферромагнетиками . Магнитная восприимчивость (ферромагнетиков положительна (c > 0) и достигает значений 104 –105гс/э, их намагниченность J (или индукция В = Н + 4pJ ) растет с увеличением напряжённости магнитного поля Н нелинейно (рис. 2 ) и в полях 1–100 э достигает предельного значения Js – магнитного насыщения. Значение J зависит также от «магнитной предыстории» образца, это делает зависимость J от Н неоднозначной (наблюдается магнитный гистерезис ).

  Проявления Ф. в монокристаллах и поликристаллах могут существенно различаться. В ферромагнитных монокристаллах наблюдается магнитная анизотропия (рис. 3 ) – различие магнитных свойств по разным кристаллографическим направлениям. В поликристаллах с хаотическим распределением ориентаций кристаллических зёрен анизотропия в среднем по образцу отсутствует, но при неоднородном распределении ориентаций она может наблюдаться (магнитная текстура).

  Магнитные и другие физические свойства ферромагнетиков обладают специфической зависимостью от температуры Т. Намагниченность насыщения Js имеет наибольшее значение при Т = 0 К и монотонно уменьшается до нуля при Т = Q (рис. 4 ).

  Выше Q ферромагнетик переходит в парамагнитное состояние (см. Парамагнетизм ), а в некоторых случаях (редкоземельные металлы) – в антиферромагнитное. При Н = 0 этот переход, как правило, является фазовым переходом 2-го рода. Температурный ход магнитной проницаемости m (или восприимчивости c) ферромагнетиков имеет явно выраженный максимум вблизи Q. При Т > Q восприимчивость (обычно следует Кюри – Вейса закону . При намагничивании ферромагнетиков изменяются их размеры и форма (см. Магнитострикция ). Поэтому кривые намагничивания и петли гистерезиса зависят от внешних напряжений. Наблюдаются также аномалии в величине и температурной зависимости упругих постоянных, коэффициентов линейного и объёмного расширения. При адиабатическом намагничивании и размагничивании ферромагнетики изменяют свою температуру (см. Магнитное охлаждение ). Специфические особенности немагнитных свойств ферромагнетиков наиболее ярко проявляются вблизи Т = Q.

  Поскольку самопроизвольная намагниченность ферромагнетиков сохраняется до Т = Q, а в типичных ферромагнетиках температура (может достигать ~ 103 К, то k Q » 10-13эрг (k – Больцмана постоянная ). Это означает, что энергия взаимодействия, которая ответственна за существование ферромагнитного порядка атомных магнитных моментов в кристалле, тоже должна быть порядка 10-13эрг  на каждую пару соседних магнитно-активных атомов. Такое значение энергии может быть обусловлено только электрическим взаимодействием между электронами, ибо энергия магнитного взаимодействия электронов двух соседних атомов ферромагнетика не превышает, как правило, 10-16эрг, и поэтому может обеспечить температуру Кюри лишь ~ 1 К (такие ферромагнетики с т. н. дипольным магнитным взаимодействием тоже существуют). В общем случае магнитные взаимодействия в ферромагнетиках определяют их магнитную анизотропию. Классическая физика не могла объяснить каким образом электрическое взаимодействие может привести к Ф. Только квантовая механика позволила понять тесную внутреннюю связь между результирующим магнитным моментом системы электронов и их электростатическим взаимодействием, которое принято называть обменным взаимодействием.

  Необходимым условием Ф. является наличие постоянных (независящих от Н ) магнитных (спиновых или орбитальных, или обоих вместе) моментов электронных оболочек атомов ферромагнетиков. Это выполняется в кристаллах, построенных из атомов переходных элементов (атомов с недостроенными внутренними электронными слоями). Различают 4 основных случая:

  1) металлические кристаллы (чистые металлы, сплавы и интерметаллические соединения) на основе переходных элементов с недостроенными d -cлоями (в первую очередь 3d -cлоем у элементов группы железа); 2) металлические кристаллы на основе переходных элементов с недостроенными f- cлоями (редкоземельные элементы с недостроенным 4f -cлоем); 3) неметаллические кристаллические соединения при наличии хотя бы одного компонента из переходных d- или f- элементов; 4) сильно разбавленные растворы атомов переходных d- или f -металлов в диамагнитной металлической матрице. Появление в этих четырёх случаях атомного магнитного порядка обусловлено обменным взаимодействием.

  В неметаллических веществах (случай 3) это взаимодействие чаще всего носит косвенный характер, при котором магнитный порядок электронов недостроенных d- или f- cлоев в ближайших соседних парамагнитных ионах устанавливается при активном участии электронов внешних замкнутых слоев магнитно-нейтральных ионов (например, O2- , S2- , Se2- и т.п.), расположенных обычно между магнитно-активными ионами (см. Ферримагнетизм ). Как правило, здесь возникает антиферромагнитный порядок, который приводит либо к компенсированному антиферромагнетизму, если в каждой элементарной ячейке кристалла суммарный магнитный момент всех ионов равен нулю, либо к ферримагнетизму – если этот суммарный момент не равен нулю. Возможны случаи, когда взаимодействие в неметаллических кристаллах носит ферромагнитный характер (все атомные магнитные моменты параллельны), например EuO, Eu2 SiO4 , CrBr3 и др.

101
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело