Выбери любимый жанр

Большая Советская Энциклопедия (ЯД) - Большая Советская Энциклопедия "БСЭ" - Страница 23


Перейти на страницу:
Изменить размер шрифта:

23

Лит.: Кречетович Л. М., Ядовитые растения СССР, М., 1940; Ядовитые растения лугов и пастбищ, М. — Л., 1950; Гусынин И. А., Токсикология ядовитых растений, 4 изд., М., 1962; Дударь А. К., Ядовитые и вредные растения лугов, сенокосов и пастбищ, М., 1971; Вильнер А. М., Кормовые отравления, 5 изд., Л., 1974.

  В. Н. Вехов.

Большая Советская Энциклопедия (ЯД) - i009-001-210876334.jpg

Ядовитые растения: 1 — красавка беладонна; 2 — скополия карниолийская (2а — плод); 3 — вех ядовитый (3а — корневище в разрезе, 3б — цветок, 3в — плод).

Большая Советская Энциклопедия (ЯД) - i009-001-222160505.jpg

Ядовитые растения: 1 — аконит каракольский (1а — клубни); 2 — обвойник греческий (2а — кусок коры); 3 — белена чёрная (3а — плод, 3б — семя); 4 — дурман вонючий (4а — плод, 4б — семя); 5 — болиголов пятнистый (5а — участок стебля, 5б — зонтик с плодами, 5в — плод); 6 — аронник пятнистый (6а — клубень, 6б — плоды); 7 — переступень белый (7а — плоды, 7б — корни, 7в — цветок).

Ядозубы

Ядозу'бы (Helodermatidae), семейство ядовитых ящериц. Туловище вальковатое, плотное; хвост толстый, короткий. Длина до 80 см. Тело сверху покрыто крупной бугорчатой чешуей. Окраска пёстрая, с тёмным рисунком на оранжево-красном или беловато-жёлтом фоне. Зубы длинные, бороздчатые. Нижнечелюстные железы вырабатывают яд, смертельный для мелких позвоночных животных; известны случаи гибели людей. Два вида: жилатье и эскорпион. Распространены от юго-запада США до юго-запада Мексики. Населяют сухие каменистые предгорья и полупустыни. Ведут сумеречный и ночной образ жизни. Питаются насекомыми, ящерицами, змеями, грызунами, птенцами, яйцами птиц и пресмыкающихся. Самка откладывает 3—12 яиц.

Ядохимикаты

Ядохимика'ты , то же, что пестициды .

Ядра атомного деление

Ядра' а'томного деле'ние , процесс расщепления атомного ядра на несколько более лёгких ядер — «осколков», наиболее часто — на 2 осколка, близких по массе. В 1938 немецкие учёные О. Ган и Ф. Штрасман установили, что при бомбардировке урана нейтронами образуются ядра щёлочноземельных элементов, в частности — ядра Ba. Несколько позднее австрийский физики Л. Майтнер и О. Фриш показали, что ядро 235 U делится под действием нейтрона на 2 осколка. Они ввели термин «деление ядер», имея в виду сходство этого явления с делением клеток в биологии. Они же дали первое качеств, объяснение Я. а. д.

  Начальная стадия деления — медленное изменение формы ядра, при котором появляется шейка, соединяющая 2 ещё не полностью сформированных осколка (рис. 1 , а, б). Время прохождения этой стадии (10-14 10-18сек ) зависит от того, насколько сильно возбуждено делящееся ядро. Постепенно шейка утоньшается, и в некоторый момент происходит её разрыв (рис. 1 , в). Образующиеся осколки с большой энергией разлетаются в противоположные стороны (рис. 1 , г).

  Деформация ядра при делении сопровождается изменением его потенциальной энергии (рис. 2 ). Для того чтобы ядро достигло формы, предшествующей его разрыву, необходима затрата определённой энергии для преодоления потенциального барьера , называется барьером деления. Эту энергию обычно ядро получает извне, в результате той или иной ядерной реакции (например, при захвате нейтрона). Я. а. д. наблюдается для всех ядер тяжелее Ag, однако вероятность его во много раз больше для самых тяжёлых элементов. В случае 235 U деление происходит при захвате даже тепловых нейтронов .

  В 1940 Г. Н. Флёров и К. А. Петржак (СССР) обнаружили самопроизвольное (спонтанное) Я. а. д., при котором происходит туннельное проникновение через барьер деления (см. Туннельный эффект ). Спонтанное деление — разновидность радиоактивного распада ядер (см. Радиоактивность ) и характеризуется периодом полураспада (периодом деления). Вероятность спонтанного деления зависит от высоты барьера деления. Для изотопов U и соседних с ним элементов барьер деления ~6 Мэв. Высота барьера, а следовательно, и период спонтанного деления ядер зависят от отношения Z2 /A (рис. 3 ). При изменении Z2 /A от 34,3 для 232 Th до 41,5 для 260 Ku период спонтанного деления уменьшается ~ в 1030 раз.

  Деление тяжёлых ядер сопровождается выделением энергии. В тяжёлых ядрах из-за больших сил электростатического расталкивания нуклоны связаны друг с другом слебее, чем в осколках — ядрах середины периодической системы элементов . Поэтому масса тяжёлого ядра больше суммы масс образующихся осколков. Разница в массах соответствует энергии, выделяемой при делении (см. Относительности теория ). Значительная часть этой энергии выделяется в виде кинетической энергии осколков, равной энергии электростатического отталкивания двух соприкасающихся осколков в момент разрыва ядра на две части (рис. 1 , б). Суммарная кинетическая энергия осколков несколько увеличивается по мере возрастания Z делящегося ядра и составляет для ядер U и трансурановых элементов величину ~ 200 Мэв. Осколки быстро тормозятся в среде, вызывая её нагревание, ионизацию и нарушая её структуру. После соответствующей химической обработки под микроскопом могут быть замечены характерные следы осколков деления (рис. 4 ). Преобразование кинетической энергии осколков деления в тепловую энергию (нагревание ими окружающей среды) является основой использования ядерной энергии (см. Ядерный реактор ,Ядерный взрыв ).

  В момент разрыва ядра осколки сильно деформированы, но по мере их удаления друг от друга деформация уменьшается, что приводит к увеличению их внутренней энергии. В дальнейшем энергия возбуждения осколков уменьшается в результате испускания ими нейтронов и g-квантов (рис. 1 , г). Когда энергия возбуждения осколков становится меньше энергии, необходимой для отделения нейтрона от ядра, эмиссия нейтронов прекращается и начинается интенсивное испускание g-квантов. В среднем наблюдается 8—10 g-квантов на 1 акт деления.

  Т. к. разрыв шейки ядра может происходить по-разному, то масса, заряд и энергия возбуждения осколков флуктуируют от одного акта деления к другому. Число нейтронов v, испущенных при делении, также флуктуирует. При бомбардировке U медленным и нейтронами число нейтронов на 1 акт деления n ~ 2,5. Для более тяжёлых элементов n увеличивается. Значит, превышение n над 1 — чрезвычайно важный факт. Именно это обстоятельство позволяет осуществлять ядерную цепную реакцию и накапливать в ядерных реакторах энергию, выделяющуюся при Я. а. д. в макроскопических масштабах. Приближённо энергетический спектр нейтронов можно считать максвелловским со средней энергией ~1,3 Мэв (см. Максвелла распределение ).

  Ядра, образующиеся при делении, перегружены нейтронами и являются радиоактивными (изотопы Ba и др.). Соотношение между числами протонов Z и нейтронов N = А Z в них зависит от энергии возбуждения делящегося ядра. При достаточно высоком возбуждении соотношение N и Z в осколках остаётся обычно тем же, что у начального делящегося ядра. При малой энергии возбуждения делящегося ядра нейтроны и протоны распределяются между осколками таким образом, что в обоих осколках происходит примерно одинаковое число b-распадов, прежде чем они превратятся в стабильные ядра. В отдельных случаях (приблизительно 0,7% по отношению к общему числу делений) образующееся при b-распаде возбуждённое дочернее ядро испускает нейтрон. Эмиссия этого нейтрона 113 возбуждённого ядра — процесс быстрый (t < 10-16сек ), однако он запаздывает по отношению к моменту делений ядра на время, которое может достигать десятков сек; нейтроны, испускаемые при этом, называются запаздывающими нейтронами.

23
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело