Медицинская физика - Подколзина Вера Александровна - Страница 3
- Предыдущая
- 3/5
- Следующая
Условным средним Yх назовем среднее арифметическое значение Y, соответствующее значению Х = х. Корреляционной зависимостью, или корреляцией Y от Х, называют функцию Y x = f(x). Равенство называют уравнением регрессии Y на Х, а график функции – линией регрессии Y на Х.
7. Кибернетические системы
Кибернетической системой называют упорядоченную совокупность объектов (элементов системы), взаимодействующих и взаимосвязанных между собой, которые способны воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Примерами кибернетических систем являются коллективы людей, мозг, вычислительные машины, автоматы. Соответственно этому элементами кибернетической системы могут быть объекты разной физической природы: человек, клетки мозга, блоки вычислительной машины и т. д. Состояние элементов системы описывается некоторым множеством параметров, которые подразделяются на непрерывные, принимающие любые вещественные значения в определенном интервале, и дискретные, принимающие конечные множества значений. Так, например, температура тела человека – непрерывный параметр, а его пол – дискретный параметр. Функционирование кибернетической системы описывается тремя свойствами: функциями, которые учитывают изменение состояний элементов системы, функциями, вызывающими изменения в структуре системы (в том числе и вследствие внешнего воздействия), и функциями, определяющими сигналы, передаваемые системой за ее пределы. Кроме того, учитывается начальное состояние системы.
Кибернетические системы различаются по своей сложности, степени определенности и уровню организации.
Кибернетические системы делятся на непрерывные и дискретные. В непрерывных системах все сигналы, циркулирующие в системе, и состояния элементов задаются непрерывными параметрами, в дискретных – дискретными. Существуют однако и смешанные системы, в которых имеются параметры обоих видов. Деление систем на непрерывные и дискретные является условным и определяется необходимой степенью точности исследуемого процесса, техническими и математическими удобствами. Некоторые процессы или величины, имеющие дискретную природу, например электрический ток (дискретность электрического заряда: он не может быть меньше, чем заряд электрона), удобно описывать непрерывными величинами. В других случаях, наоборот, непрерывный процесс имеет смысл описывать дискретными параметрами.
В кибернетике и технике принято деление систем на детерминированные и вероятностные. Детерминированные системы, элементы которой взаимодействуют определенным образом, состояние и поведение ее предсказываются однозначно и описываются однозначными функциями. Поведение вероятностных систем можно определить с некоторой долей достоверности.
Система называется замкнутой, если ее элементы обмениваются сигналами только между собой. Незамкнутые, или открытые, системы обязательно обмениваются сигналами с внешней средой.
Для восприятия сигналов из внешней среды и передачи их внутрь системы всякая открытая система обладает рецепторами (датчиками или преобразователями). У животных, как у кибернетической системы, рецепторами являются органы чувств – осязание, зрение, слух и иное, у автоматов – датчики: тензоме-трические, фотоэлектрические, индукционные и т. д.
8. Понятие о медицинской кибернетике
Медицинская кибернетика является научным направлением, связанным с использованием идей, методов и технических средств кибернетики в медицине и здравоохранении. Условно медицинскую кибернетику можно представить следующими группами.
Вычислительная диагностика заболеваний. Эта часть в основном связана с использованием вычислительных машин для подготовки диагноза. Структура любой диагностической системы состоит из медицинской памяти (совокупного медицинского опыта для данной группы заболеваний) и логического устройства, позволяющего сопоставить симптомы, обнаруженные у больного опросом и лабораторным обследованием, с имеющимся медицинским опытом. Этой же структуре следует и диагностическая вычислительная машина.
Сначала разрабатывают методики формального описания состояния здоровья пациента, проводят тщательный анализ клинических признаков, используемых в диагностике. Отбирают главным образом те признаки, которые допускают количественную оценку.
Кроме количественного выражения физиологических, биохимических и других характеристик больного, для вычислительной диагностики необходимы сведения о частоте клинических синдромов и диагностических признаков, об их классификации, зависимости, об оценке диагностической эффективности признаков и т. п. Все эти данные хранятся в памяти машины. Она сопоставляет симптомы больного с данными, заложенными в ее памяти. Логика вычислительной диагностики соответствует логике врача, устанавливающего диагноз: совокупность симптомов сопоставляется с предшествующим опытом медицины. Новую (неизвестную) болезнь машина не установит. Врач, встретивший неизвестное заболевание, сможет описать его признаки. Подробности о таком заболевании можно установить, лишь проведя специальные исследования. ЭВМ в таких исследованиях может играть вспомогательную роль.
Кибернетический подход к лечебному процессу. После того как врач установит диагноз, назначается лечение, которое не сводится к одноразовому воздействию. Это сложный процесс, во время которого врач постоянно получает медико-биологическую информацию о больном, анализирует ее и в соответствии с ней уточняет, изменяет, прекращает или продолжает лечебное воздействие.
В настоящее время кибернетический подход к лечебному процессу облегчает работу врача, позволяет эффективнее проводить лечение тяжелобольных, своевременно принимать меры при осложнениях во время операции, разрабатывать и контролировать процесс лечения медикаментами, создавать биоупра-вляемые протезы диагностирование заболеваний, управление устройствами, регулирующими жизненно важные функции.
В задачи оперативного врачебного контроля входит наблюдение за состояние тяжелобольных с помощью систем слежения (мониторных, систем наблюдения за состоянием здоровых людей, находящихся в экстремальных условиях: стрессовых состояниях, в невесомости, гипербарических условиях, среде с пониженным содержанием кислорода и т. п.).
9. Основы механики
Механикой называют раздел физики, в котором изучается механическое движение материальных тел. Под механическим движением понимают изменение положения тела или его частей в пространстве с течением времени.
Для медиков этот раздел представляет интерес по следующим причинам:
1) понимание механики движения целого организма для целей спортивной и космической медицины, механики опорно-двигательного аппарата человека – для целей анатомии и физиологии;
2) знание механических свойств биологических тканей и жидкостей;
3) понимание физических основ некоторых лабораторных методик, используемых в практике медико-биологических исследований, например центрифугирования.
Механика вращательного движения абсолютно твердого тела
Абсолютно твердым телом называют такое, расстояние между любыми двумя точками которого неизменно. При движении размеры и форма абсолютно твердого тела не изменяются. Быстрота вращения тела характеризуется угловой скоростью, равной первой производной от угла поворота радиус-вектора по времени:
ω = dt/da
Угловая скорость есть вектор, который направлен по оси вращения и связан с направлением вращения. Вектор угловой скорости в отличие от векторов скорости и силы является скользящим. Таким образом, задание вектора w указывает положение оси вращения, направление вращения и модуль угловой скорости. Быстрота изменения угловой скорости характеризуется угловым ускорением, равным первой производной от угловой скорости по времени:
- Предыдущая
- 3/5
- Следующая