Выбери любимый жанр

Краткая история почти всего на свете - Брайсон Билл - Страница 39


Перейти на страницу:
Изменить размер шрифта:

39

То был особенно богатый научными событиями период. В год приезда Резерфорда в Кембридж в Германии, в Вюрцбургском университете Вильгельм Рентген открыл рентгеновские лучи; в следующем году Анри Беккерель открыл радиоактивность. А для самой Кавендишской лаборатории наступало время величия. В 1897 году Дж. Дж. Томсон с коллегами откроют там электрон, в 1911 году Ч.Т. Р. Вильсон изобретет первый детектор заряженных частиц (об этом ниже), а в 1932 году Джеймс Чэдвик все там же откроет нейтрон. Еще позднее, в 1953 году, Джеймс Уотсон и Фрэнсис Крик создадут в Кавендишской лаборатории структурную модель молекулы ДНК.

Сначала Резерфорд работал с радиоволнами, и небезуспешно — ему удалось передать четкий сигнал на расстояние более мили; очень неплохое достижение для того времени, но он оставил эту тему, когда один из старших коллег убедил его, что у радио нет большого будущего. Да и вообще Резерфорд не очень преуспевал в Кавендишской лаборатории и через три года, не видя перспектив, занял должность в Макгилльском университете в Монреале, откуда началось его долгое и неуклонное восхождение к вершинам славы. К моменту получения Нобелевской премии (согласно официальной формулировке, за «исследования в области расщепления элементов и химии радиоактивных веществ») он уже работал в Манчестерском универ­ситете и, фактически, там и проделал самые важные работы по определению строения и природы атома.

К началу XX века было уже известно, что атомы состоят из частей, — это было установлено в результате открытия Томсоном электрона. Но тогда еще не знали, из какого количества частей состоит атом, как они крепятся друг к другу и какую форму принимают. Некоторые физики думали, что атомы имеют форму куба, потому что куб можно сложить таким образом, чтобы не оставалось пустого пространства. Правда, более общепринятым было представление об атоме, похожем на булочку с изюмом: что это плотный, положительно заряженный предмет, напичканный, как изюмом, отрицательно заряженными электронами.

В 1910 году Резерфорд (при участии своего студента Ханса Гейгера, который позднее изобрел детектор радиоактивности, носящий его имя) обстрелял листок золотой фольги ионизированными атомами гелия, иначе альфа-частицами*.

* (Гейгер позднее станет убежденным нацистом, без колебаний выдававшим коллег-евреев, включая многих, прежде оказывавших ему помощь.)

 К удивлению Резерфорда, некоторые частицы отскакивали назад. Словно, по его словам, он выстрелил 15-дюймовым снарядом в лист бумаги, а снаряд отскочил ему на колени. Возможность такого явления было невозможно предположить. После долгих размышлений он нашел единственно возможное объяснение: частицы отскакивали, сталкиваясь с чем-то очень малым и плотным в сердцевине атома, тогда как другие частицы беспрепятственно пролетали сквозь лист. Атом, догадался Резерфорд, это в основном пустое пространство с очень плотным ядром в центре. Это было весьма обнадеживающее открытие, но оно сразу ставило одну проблему. По всем законам традиционной физики атомы в таком случае не должны были существовать.

Прервемся на минутку и рассмотрим строение атома, как оно представляется теперь. Каждый атом состоит из трех видов элементарных частиц: протонов, несущих положительный электрический заряд, отрицательно заряженных электронов и нейтронов, которые не несут никакого заряда. Протоны и нейтроны плотно упакованы в ядро, а электроны обращаются вокруг него. Химическую индивидуальность дает атомам количество протонов. Атом с одним протоном — это атом водорода, с двумя — атом гелия, с тремя — лития и так далее по таблице. Добавляя протон, вы каждый раз получаете новый элемент. (Ввиду того, что число протонов в атоме всегда уравновешивается равным числом электронов, иногда можно прочесть, что элемент определяется количеством электронов, что, в сущности, одно и то же. Как мне объяснили, протоны придают атому индивидуальность, а электроны определяют его личность.)

Нейтроны не влияют на идентичность атома, но увеличивают его массу. Число нейтронов обычно примерно такое же, как и протонов, хотя может несколько отличаться в ту или иную сторону. Добавьте или убавьте нейтрон-другой, и вы получите изотоп. Обозначения, которые вы встречаете в связи с датированием пород в археологии, относятся к изотопам, например, термин «углерод-14» означает атом углерода с 6 протонами и 8 нейтронами (в сумме получается 14).

Нейтроны и протоны занимают ядро атома. Оно совсем крошечное — всего одна миллионная миллиардной части полного объема атома, — но фантастически плотное, поскольку содержит практически всю массу атома. Как писал Кроппер, если атом увеличить до размеров собора, ядро будет всего лишь размером с муху, но эта муха будет во много тысяч раз тяжелее собора. Именно эта обширность, эта невообразимая, потрясающая вместительность атома заставили Резерфорда в 1910 году чесать в затылке.

По сей день у многих вызывает удивление мысль о том, что атомы в основном представляют собой пустое пространство, и твердость окружающих нас тел — не более чем иллюзия. Когда в реальном мире друг с другом сближают­ся два тела — чаще всего в качестве иллюстрации берут биллиардные шары, — они на самом деле не ударяются друг о друга. «Правильнее сказать, — поясняет Тимоти Феррис132, — что отрицательные заряды обоих шаров взаимно отталкиваются... Не будь у них электрических зарядов, они могли бы, подобно галактикам, беспрепятственно пройти сквозь друг друга». Сидя на стуле, вы на самом деле не сидите на нем, а висите над ним на высоте одного ангстрема (стомиллионная доля сантиметра), ваши электроны и электроны стула отчаянно противятся любой более тесной близости.

Рисунок атома, как его представляют почти все, состоит из одного-двух электронов, которые обращаются вокруг ядра, наподобие планет, вращающихся вокруг Солнца. Это изображение было создано в 1904 году японским физиком Хантаро Нагаока на основе не более чем догадки. Оно абсолютно неверно, но все равно надолго сохранилось. Как не раз отмечал Айзек Азимов133, оно вдохновляло поколения писателей-фантастов на создание произведений о мирах внутри миров, в которых атомы становятся маленькими обитаемыми солнечными системами или наша Солнечная система оказывается всего лишь пылинкой в значительно более крупной системе. Даже сегодня Европейский центр ядерных исследований (ЦЕРН) использует созданное Нагаокой изображение в качестве эмблемы своего сайта в Интернете134. На самом деле, как вскоре поняли физики, электроны совсем не похожи на вращающиеся по орбитам планеты, а больше напоминают лопасти крутящегося вентилятора, умудряясь одновременно заполнять каждый кусочек пространства на своих орбитах (с одной существенной разницей, что если лопасти вентилятора только кажутся находящимися одновременно везде, электроны действительно находятся сразу всюду).

Стоит ли говорить, что очень немногое из этого было понятно в 1910 году или даже годы спустя. Открытие Резер­форда поставило рад крупных неотложных проблем. Не последняя среди них состояла в том, что электроны не могут обращаться вокруг ядра, не падая на него. По законам традиционной электродинамики электрон при вращении должен очень быстро — практически мгновенно — израсходовать свою энергию и по спирали упасть на ядро с гибельными последствиями для них обоих. Была также проблема: каким образом протоны с их положительными зарядами могут быть связаны друг с другом внутри ядра, не разорвав на куски самих себя и весь атом. Становилось ясно, что все происходящее там, в мире очень малого, не подчиняется законам макромира, которые мы берем за основу.

По мере того как физики углублялись в субатомное царство, они начинали понимать, что его реальность не только отличается от всего, что нам известно, но и от всего, что вообще можно себе представить. «Поскольку поведение атома столь сильно отличается от нашего повседневного опыта, — заметил однажды Ричард Фейнман, — очень трудно к этому привыкнуть, и оно представляется необычным и загадочным каждому в равной мере, как начинающему, так и опытному физику». Когда Фейнман высказывался по этому поводу, у физиков уже было полвека, чтобы приспособиться к странностям поведения атомов. Представьте, что должен был испытывать Резерфорд и его коллеги в начале 1910-х годов, когда все это было совершенно новым и неизведанным.

39
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело