Выбери любимый жанр

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. - Страница 50


Перейти на страницу:
Изменить размер шрифта:

50
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_040.jpg

Рис. 33 а. Скелет, на базе которого путем рекурсивной замены строится INT.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_041.jpg

Рис. 33 б. Скелет, на базе которого путем рекурсивной замены строится график G.

Поясним сказанное на еще более впечатляющем примере: вообразите, что вы оставляете рекурсивную часть определения INT, но заменяете начальный рисунок, скелет. Вариант скелета показан на рис. 33б); также и здесь квадраты уменьшаются ближе к углам. Если вы начнете вкладывать этот скелет в себя самого снова и снова, вы получите основной график моей докторской диссертации, который я назвал Графиком G (рис. 34). (На самом деле, там также потребовались определенные сложные деформации, но основной идеей остается «самовложение».) Таким образом, График G — член семьи INT. Это дальний родственник, так как его скелет намного сложнее скелета INT; однако рекурсивные части их определений идентичны, и именно в этом заключается их родство.

Я не буду слишком долго держать вас в неведении относительно происхождения этих замечательных графиков. INT (сокращенное interchange — обмен) связан с проблемой непрерывных дробей, а еще точнее — «последовательностей ETA». В основе INT лежит идея о том, что знаки плюс и минус взаимозаменяемы для определенного вида непрерывных дробей. Отсюда следует то, что INT(INT(x))=x. Когда x рационально, ITN(x) также рациональна; квадратичные значения x дают квадратичные значения INT(x). He знаю, верна ли эта тенденция для высших алгебраических степеней. Другим любопытным свойством INT является то, что в точках рациональных значений x функция разрывается скачками, в то время как в точках иррациональных значений x она непрерывна.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_042.jpg

Рис. 34. График G: рекурсивный график, показывающий энергетические полосы для электронов в идеализированном кристалле, помещенном в магнитное поле. a, представляющая силу магнитного поля, изменяется вертикально от 0 до 1.Энергия показана на горизонтальной оси. Сегменты горизонтальных линий — разрешенные энергии электронов.

График G представляет собой сильно упрощенный ответ на вопрос «Какую энергию может иметь электрон в кристалле, помещенном в магнитное поле?» Это очень интересная проблема, так как она совмещает две фундаментальные физические ситуации: электрон в совершенном кристалле и электрон в однородном магнитном поле. Решения этих простых проблем хорошо известны и кажутся почти несовместимыми; тем интереснее выяснить, как природе удается их совместить. Оказывается, что ситуации «электрон в кристалле без магнитного поля» и «электрон в магнитном поле без кристалла» все-таки имеют одну общую черту: в обоих случаях электрон ведет себя периодично во времени. Когда две ситуации совмещаются, отношение их периодов является ключевым параметром, так как оно выражает возможные уровни энергии электронов. Однако свой секрет это отношение выдает только тогда, когда оно записано в форме непрерывной дроби.

График G показывает это распределение. Горизонтальные оси представляют энергию, вертикальные — упомянутое выше отношение временных периодов, которое мы называем «а». Внизу а равняется нулю, наверху — единице. Когда а равняется нулю, магнитное поле отсутствует. Каждый из составляющих график G сегментов — энергетическая полоса, представляющая возможные уровни энергии. Каждая из разномасштабных пустых полос, пересекающих график G, представляет районы запрещенных энергий. Одним из самых удивительных свойств графика G является то, что когда а рациональна (иными словами, может быть представлена в форме p/q), то существует ровно q таких пустых полос (хотя, когда q четно, две из них «целуются» в центре).

Когда а иррационально, полосы сжимаются до точек, бесконечное число которых разбросано по так называемому «множеству Кантора» — еще один рекурсивно определяемый объект, берущий начало в топологии.

У читателя может возникнуть вопрос, можно ли получить такую сложную структуру экспериментальным путем. Честно говоря, я бы сам удивился больше всех, если бы в результате какого-нибудь эксперимента получился График G. График G «физичен» в том смысле, что он указывает, как можно математически подходить к менее идеальным физическим проблемам. Другими словами, График G принадлежит к области теоретической физики, а не указывает физикам-практикам на то, что они могут получить в результате экспериментов. Как-то раз один из моих друзей-агностиков, пораженный бесконечным количеством бесконечностей Графика G, именовал этот график «портретом Бога» — и это совсем не показалось мне богохульством.

Рекурсия на низшем уровне материи

Мы уже встретились с рекурсией в грамматике языков, видели рекурсивные геометрические деревья, тянущие свои ветви в бесконечность, и привели пример рекурсии в физике твердых тел. Теперь давайте взглянем еще на один способ рекурсивного устройства мира. Я имею в виду элементарные частицы: электроны, протоны, нейтроны и крохотные кванты электромагнитного излучения, называемые «фотонами». Мы увидим, что эти частицы в некотором роде «вставлены» друг в друга (это определено со всей строгостью только в релятивистской квантовой механике), и что это положение можно описать рекурсивно — может быть, даже с помощью какой-либо «грамматики».

Начнем с того, что если бы элементарные частицы не взаимодействовали друг с другом, мир был бы невероятно прост. В таком мире физики были бы наверху блаженства, так как там они могли бы с легкостью вычислить поведение всех частиц! (Конечно, при условии, что в таком мире существовали бы сами физики — что кажется весьма сомнительным.) Невзаимодействующие частицы называются голыми, и являются чисто гипотетическими — в реальном мире их не существует.

Теперь представьте себе, что мы «включаем» взаимодействия — частицы связываются между собой так же, как связаны между собой функции M и F или женатые пары. Эти реальные частицы называются ренормализованными — неуклюжий, но интересный термин. Теперь каждая частица определяется через совокупность всех других частиц, которые, в свою очередь, определяются через первую частицу, и так далее. Получается движение кругом и кругом, по бесконечной петле.

Давайте теперь перейдем на более конкретные темы и ограничимся двумя частицами — электронами и фотонами. Нам также придется включить сюда и античастицу электрона — позитрон. (Фотон является античастицей себя самого.) Вообразите себе скучный мир, в которой голый электрон желает добраться от точки А до точки В, как Зенон в моей «Трехголосной инвенции».

Физик нарисовал бы такую картину:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_043.jpg

Существует весьма простое математическое выражение, соответствующее этому отрезку и его конечным точкам. С его помощью, физик может понять поведение голого электрона на этой траектории.

Теперь давайте «включим» электромагнитное взаимодействие, так что электроны и фотоны начнут взаимодействовать. Хотя в этой сцене фотоны не участвуют, наше допущение будет иметь серьезные последствия даже для этой простой траектории. В частности, электроны теперь способны испускать и снова поглощать виртуальные фотоны — фотоны, рождающиеся и умирающие прежде, чем их заметят. Этот процесс выглядит так:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_044.jpg

По мере того, как электрон распространяется, он может испускать и снова поглощать один фотон за другим, иногда вкладывая один фотон в другой, как показано на рисунке ниже:

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - i_045.jpg
50
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело