Выбери любимый жанр

Журнал «Компьютерра» №37 - Журнал Компьютерра - Страница 16


Перейти на страницу:
Изменить размер шрифта:

16
***
Журнал «Компьютерра» №37 - pic_21.jpg

NetBurst тщательно оптимизировалась для работы на высоких частотах, и назвать эту архитектуру классической можно только с большой натяжкой. Для начала упомянем хотя бы тот же Trace Cache (TC), заменяющий в NetBurst классический Гарвардский I-cache (L1 code). Идея состоит в том, что в NetBurst декодер вынесен за пределы собственно конвейера - процессор конвертирует x86-инструкции в свое внутреннее представление не на лету, как AMD K8, а заблаговременно, еще на стадии копирования кода в кэш-память первого уровня. Устроено это все так своеобразно (например, в процессе декодирования декодер убирает безусловные переходы, занимается предсказанием условных переходов и может едва ли не «разворачивать» циклы!), что внутреннему устройству Trace Cache и декодеру инструкций для него вообще можно посвятить отдельную статью (чего мы делать сейчас не будем; скажем только, что декодер для TC работает очень медленно). Точная длина соответствующего участка конвейера неизвестна, но составляет, по разным оценкам, от 10-15 до 30 тактов - то есть этот «скрытый» участок конвейера имеет длину едва ли не большую, чем «видимый». Таким образом, введение TC позволяет практически вдвое уменьшить эффективную длину конвейера (страшно даже представить NetBurst без Trace Cache)[С K8, кстати, та же самая история - декодированием и подготовкой инструкций занята примерно половина конвейера. Есть предположения, что в следующем поколении процессоров AMD - архитектуре K9 - появится и Trace Cache. Скажем, в K8 подобное нововведение уменьшило бы видимую длину конвейера до 6-7 стадий в целочисленных вычислениях и до 12 стадий в вычислениях с плавающей точкой!]! Емкость TC для всех NetBurst составляет 12 тысяч микроопераций; в терминах классического x86 это соответствует примерно 8-16 Кбайт кэша L1-data; причем работает TC и обслуживающая его логика на половинной частоте ядра и наполняется декодером с темпом не более одной новой инструкции за такт. Поэтому если процессор некстати вылетит на незакэшированный участок кода (а кэш маленький, и подобная ситуация вполне возможна), то от теоретически возможных четырех инструкций за такт в лучшем случае останется лишь одна. Подобные «резкие потери темпа» вообще свойственны архитектуре NetBurst; к счастью, такие ситуации возникают редко.

Дальнейшее повествование я буду вести, указывая время исполнения инструкции для ядра Northwood (20-стадийный конвейер). Для более нового Prescott в целом справедливо все то же самое, просто время исполнения отдельных стадий слегка возросло.

Первые четыре такта работы конвейера - извлечение специальным блоком выборки инструкций из TC и второй этап предсказания условных переходов. В первый раз декодер TC уже пытался предсказать переход, так что второй этап предсказания фактически сводится к «угадыванию» того, правильно ли декодер угадал переход еще «в тот раз» или нет. Заодно для некоторых записей TC («закладок»["Закладки" позволяют увеличить эффективный объем Trace Cache, поскольку вместо нескольких mОР’ов мы храним в нем одну «закладку»]) происходит их «развертывание» в несколько микроопераций. В силу того что TC работает на половинной частоте ядра, происходит выборка довольно медленно и каждый ее этап занимает по два такта конвейера. Затем полученные микрооперации (до шести штук за такт) складываются в традиционную очередь выборки (Fetch Queue), где буферизуются, сглаживая неравномерность декодирования и обеспечивая «на выходе» устоявшийся темп декодирования в три микроинструкции за такт. Задержка, вносимая буферизацией, - 1 такт; еще 1 такт расходуется на то, чтобы подготовить внутренние ресурсы процессора для выбранной из Fetch Queue тройки mOP’ов. Затем еще два такта уходит на то, чтобы подготовить для каждого mOP’а персональные физические регистры для вычислений (в рамках техники переименования регистров). И, наконец, на последнем, девятом по счету такте полностью готовые к исполнению mOP’ы начинают «распихиваться» по очередям инструкций, стоящих на выполнение.

Зачем понадобилась вся эта каша с многократными очередями? Разработчики NetBurst пытались добиться того, чтобы все стадии конвейера были независимы друг от друга и работали асинхронно, без точной привязки к некой «единой тактовой частоте» процессора. Именно асинхронность (а не только длинный конвейер!) позволяет резко повысить тактовые частоты, на которых способно работать ядро процессора.

Вернемся к конвейеру NetBurst. Итак, подготовленные к исполнению инструкции на девятом такте распределяются по двум очередям - очереди для AGU-инструкций, обращающихся к оперативной памяти (длина - 16 mOР’ов), и очереди для всего остального (32 mOP’а). На следующем такте инструкции из этих очередей разбираются аж пятью независимо работающими планировщиками - планировщиком AGU, двумя «быстрыми» и двумя «медленным» планировщиками. «Быстрые» имеют дело лишь с некоторыми самыми простыми арифметико-логическими операциями и работают на удвоенной тактовой частоте процессора, успевая забирать из очередей по две простые инструкции за такт. Нужны они для того, чтобы загружать работой «быстрые» же исполнительные блоки, построенные на специальной быстродействующей логике и тоже работающие на удвоенной тактовой частоте (до 8 ГГц!), обрабатывая по две инструкции за такт. «Медленные» планировщики «специализируются» каждый на своем типе инструкций и работают на номинальной частоте ядра. Планировщики могут переупорядочивать микрооперации по своему усмотрению (OoO-исполнение); они же отслеживают ход выполнения микроопераций, при необходимости перезапускают их и в конце выполнения инструкции записывает полученные результаты в оперативную память; на все про все у них уходит еще три такта процессора. Наконец, планировщики через четыре порта запуска (порты частично общие, а это значит, что «быстрые» и «медленные» планировщики конкурируют друг с другом за то, кто из них получит право запускать в текущем такте подготовленные mOP’ы дальше) переправляют упорядоченные микрооперации в очереди диспетчеров, где они дожидаются «разрешения на запуск». И тут начинается самое интересное.

Задача диспетчера - подготовить для микрооперации операнды таким образом, чтобы, когда команда прибыла на исполнительное устройство, необходимые для вычисления данные оказались там же. Но конвейер NetBurst устроен так, что диспетчер и собственно исполнительное устройство довольно сильно разнесены по конвейеру, и чтобы данные и микрооперация пришли одновременно, микрооперацию на исполнение требуется запускать задолго до того, как будет получено подтверждение готовности ее операндов. Если быть точным, то после запуска инструкции диспетчером два такта уйдет на подготовку данных, три такта - на исполнение команды и еще один такт - на проверку результатов[В NetBurst, как и в других архитектурах, используется быстрая выборка данных из кэша, когда, грубо говоря, «вначале вытаскиваем данные, а потом уж смотрим, что мы такое вытащили». Выборка происходит при совпадении лишь небольшой части запрошенного и найденного адресов, а проверка на то, что остальная часть адреса тоже совпадает, - производится параллельно с выборкой «вроде как найденных» данных и исполнением операции над ними], после чего инструкции уже можно будет отправлять «в отставку». Стало быть, нужно отправлять инструкцию за пару тактов до того, как данные понадобятся; причем ошиблись мы или нет, станет известно еще позже - тактов эдак через пять-семь, когда диспетчер успеет выпустить соответствующее количество инструкций, часть из которых уже будет выполнена (!). А если мы ошиблись, что тогда делать? Авторы NetBurst предложили весьма своеобразное решение - «реплей».

Снова попробую объяснить ситуацию «на пальцах». Представьте, что конвейер - это рельсовый путь, а по нему бегают вагончики - микрооперации, указывающие, что процессору нужно изготовить и в вагончики погрузить. Причем путей в нашем процессоре несколько, и инструкции разных видов - катятся по разным рельсам. Задача диспетчера, - организовать оптимальным образом движение по своей железнодорожной ветке. Что он делает? Время вагончика в пути от его станции до станции, где вагончик загрузят полезным грузом, ему известно; так что нашему диспетчеру (а всего их семь) остается только связаться с другими диспетчерами и запросить у них информацию о том, когда будут готовы те данные, которые «его» микрооперации используют в качестве исходных, и отправить вагончик с таким расчетом, чтобы он и данные, полученные на другой ветке от другой микрооперации, прибыли на исполнительное устройство одновременно.

16
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело