Выбери любимый жанр

Квантовая магия - Доронин Сергей Иванович - Страница 12


Перейти на страницу:
Изменить размер шрифта:

12

● физические свойства системы существуют сами по себе, они объективны и не зависят от измерения;

● измерение одной системы не влияет на результат измерения другой системы;

● поведение не взаимодействующей с окружением системы зависит лишь от условий в более ранние моменты времени.

Это привычные для всех нас представления об окружающей реальности.

Теорема Белла утверждает, что «объективная локальная теория» и квантовая механика дают разные предсказания для результатов измерения. Естественно, возник вопрос, каким же на самом деле является реальный мир, и неравенства Белла помогли ответить на него непосредственно — на основании анализа результатов экспериментов. Такие эксперименты были проведены А. Аспектом [30]и впоследствии многими другими исследователями. Их результаты показали, что окружающая нас реальность является квантовой в своей основе, и все вышеперечисленные предположения «объективной локальной теории» в общем случае несправедливы.

Физических экспериментов по проверке локального реализма было проведено очень много [31], и все они опровергают положения «объективной локальной теории», свидетельствуя в пользу нелокальности окружающей нас реальности.

Я остановлюсь лишь на одном, наиболее ярком эксперименте, который не оставляет практически никаких шансов «локальным реалистам».

Результаты этого эксперимента были опубликованы в Nature в 2000 году [32].

В этом эксперименте [33]исследовались

трехчастичные

запутанные состояния (так называемые

ГХЦ-состояния

Гринбергера

, Хорна,

Цайлингера

), которые позволяют дать достоверный, а не статистический результат по проверке локального реализма.

Гринбергер

, Хорн и

Цайлингер

показали, что

квантовомеханические

предсказания некоторых результатов измерений трех запутанных частиц противоречат локальному реализму в случаях, когда квантовая теория дает достоверные, то есть нестатистические предсказания. В этом — отличие от экспериментов типа

Эйнштейна-Подольского-Розена

с двумя перепутанными частицами по проверке неравенства Белла, где противоречие с локальным реализмом возникает только для статистических предсказаний.

Применение эйнштейновского понятия локальности означает, что скорость распространения информация не может превышать скорость света. Соответственно результат измерения одного фотона не должен зависеть от того, проведено ли одновременно измерение двух других фотонов, а также от исхода этих измерений. Но как с точки зрения локального реализма объяснить полные корреляции между фотонами? Единственный способ — предположить, что значение величины меняется не в результате измерения, а просто вследствие ее стохастического (случайного) поведения. То есть она может принимать различные значения потому, что это особенность ее поведения — быть изменчивой без всяких причин. Например, как в рассматриваемом эксперименте: каждый фотон якобы содержит заранее все возможные результаты измерения в виде случайного набора, но все они не зависят от измерения других фотонов.

В этом эксперименте в качестве элементов реальности рассматривались циркулярные поляризации фотонов. Предположим, что элементы реальности существуют до того, как проведено измерение. Значит, мы можем определить все возможные исходы (в данном случае — четыре). Это конкретные математические выражения, полученные как следствие сделанного предположения. То есть «локальный реалист» утверждает, что в эксперименте будут получены именно эти результаты, один из четырех в каждом частном случае.

С другой стороны, можно записать аналогичные формулы для возможных исходов эксперимента, предсказанных квантовой теорией. И

самое

интересное, что последние прямо противоположны первым! Тут уж экспериментаторам трудно ошибиться. Всякий раз, когда локальный реализм предсказывает достоверный специфический результат измерения одного фотона (при данном результате измерения двух других), квантовая физика достоверно предсказывает прямо противоположный результат. Если в случае неравенства Белла для двух фотонов разница между локальным реализмом и квантовой физикой состоит в статистических предсказаниях теории, то здесь любая статистика возникает только благодаря неизбежным ошибкам в измерениях, свойственным и классической, и квантовой физике. Поэтому

трехфотонные

состояния ГХЦ находятся в большем противоречии с локальным реализмом, чем

двухфотонные

состояния, и это противоречие легче зафиксировать в физических экспериментах.

Эксперименты подтверждают, что поляризацию фотонов для

ГХЦ-состояний

нельзя разделить на части и сопоставить с отдельными элементами реальности. По спиновым степеням свободы система составляет единое целое. Утверждения локальной объективной теории оказываются несправедливыми. Выходит, что реальность является более сложной, чем это представляется локальным реалистам.

Эксперименты по квантовой нелокальности были проведены не только с состояниями, запутанными по поляризации, но также и по времени, по импульсам и т. д., и все они подтвердили наличие нелокальности на фундаментальном уровне реальности.

После того как Белл сформулировал свою теорему, стало очевидным, что квантовая механика несовместима с локальным реализмом. В настоящее время нарушение неравенства Белла (или его аналогов) считается одним из основных факторов, свидетельствующих о наличии значительных квантовых корреляций в системе и, как следствие, невозможности описания такой системы в рамках классического подхода. Наличие запутанности в системе является необходимым условием для нарушения неравенства Белла.

Параллельно с проведением экспериментов по проверке локального реализма большая работа проводилась и физиками-теоретиками. В том числе их внимание было направлено на теоретическое изучение различных типов запутанных состояний в плане их нарушения неравенств Белла, а также на их систематизацию и классификацию. Для тех, кто хочет более подробно ознакомиться с этой информацией, я перечислю некоторые основные работы в этом направлении.

В 1991–1992 годах Н.

Гизин

и A. Перес [34]показали, что любая двусоставная система, находящаяся в чистом запутанном состоянии, нарушает неравенство Белла.

Почти сразу же этот результат был обобщен С.

Попеску

и Д.

Рорлихом [35]

и распространен на многосоставные системы, состоящие из произвольного числа подсистем. Таким образом, для чистого запутанного состояния вопрос был в основном решен: любое чистое запутанное состояние нарушает неравенство Белла, и описание такой системы невозможно в рамках локального реализма.

Со смешанными запутанными состояниями ситуация более сложная, хотя на практике, из-за декогеренции, приходится иметь дело именно с ними.

С точки зрения практического применения нелокальных свойств запутанных состояний наиболее эффективны чистые запутанные состояния, как обладающие максимальным нелокальным ресурсом. В

связи

с чем возникает вопрос, можно ли перевести систему из смешанного запутанного состояния в чистое? Первый шаг в этом направлении сделал Ч.

Беннетт

(с соавторами) [36]в 1996 году. Ими была описана процедура дистилляции запутанности к полезной форме синглета, то есть к максимально запутанному состоянию типа

ЭПР-пары

.

Впоследствии было показано [37], что любое

несепарабельное

(запутанное) смешанное состояние двусоставной системы в двухмерном гильбертовом пространстве (система 2 × 2), имеющее сколь угодно малые квантовые корреляции, может быть дистиллировано к

синглетной

форме.

12
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело