Выбери любимый жанр

Математические олимпиады по лигам. 5-9 классы - Павлов Андрей Николаевич - Страница 7


Перейти на страницу:
Изменить размер шрифта:

7

6. Ребята принесли из леса по полной корзинке грибов. Всего было собрано 289 грибов, причем в каждой корзинке их оказалось одинаковое количество. Сколько было ребят?

4 тур

1. Упростите выражение (2 + х – 1 + Зх): (7х + 6 – 3х – 5).

2. Восстановите недостающие цифры:

Математические олимпиады по лигам. 5-9 классы - i_018.png

3. На колхозном рынке продаются два арбуза разных размеров. Первый в диаметре 40 см, а второй – 80 см. Первый арбуз стоит 30 р., второй арбуз стоит 180 р. Какой из арбузов выгоднее купить и почему?

4. Перед нами толстая дощечка с тремя отверстиями: квадратным, треугольным и круглым (на рисунке дан вид сверху). Может ли существовать одна затычка такой формы, чтобы закрывать все эти отверстия? Если да, то опишите ее. Если нет – обоснуйте невозможность создания такой затычки.

Математические олимпиады по лигам. 5-9 классы - i_019.png

5. Со стартовой площадки вылетел на север вертолет. Пролетев в северном направлении 100 км, он повернул на восток. Пролетев в эту сторону 100 км, вертолет сделал новый поворот – на юг и прошел в южном направлении 100 км. Затем он повернул на запад и, пролетев 100 км, опустился. Спрашивается: где расположено место спуска вертолета относительно стартовой площадки – к западу, к востоку, к северу или югу? Подсказка: Земля имеет форму, близкую к шару, а потому вертолет не вернется на стартовую площадку!

6. Сколько существует трехзначных натуральных чисел с четными цифрами, таких, что: а) цифры в числе не повторяются; б) цифры в числе могут повторяться; в) ровно две цифры в числе повторяются?

5 тур

1. Сможете ли вы найти четыре целых числа, сумма и произведение которых являются нечетными числами?

2. Первый вторник месяца Митя провел в Смоленске, а первый вторник после первого понедельника – в Вологде. В следующем месяце Митя первый вторник провел в Пскове, а первый вторник после первого понедельника – во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?

3. Сколько нечетных чисел заключено между 300 и 700?

4. Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Сколько попыток вы попросите вам предоставить, чтобы наверняка открыть все чемоданы?

5. В турнире участвовали пять шахматистов. Известно, что каждый сыграл с остальными по одной партии и все набрали разное количество очков; занявший 1-е место не сделал ни одной ничьей; занявший 2-е место не проиграл ни одной партии; занявший 4-е место не выиграл ни одной партии. Определите результаты всех партий турнира.

6. Начнем считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвертый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 1992-м?

6 тур

1. Найдите, какую цифру обозначает каждая буква в следующем равенстве: АХА = БАХ.

2. Сколько нулей на конце этого числа: 1 · 2 · 3 · 4… · 50?

3. Некоторое число уменьшили на 7, потом уменьшили в 10 раз и получили число, которое на 34 меньше исходного. Найдите исходное число.

4. Яша идет от дома до школы 30 мин, а его брат Петя 40 мин. Петя вышел из дома на 5 мин раньше Яши. Через сколько минут Яша догонит Петю?

5. Пятиклассники ехали на автомашине из деревни в город. Когда они проехали 4/5 пути, автомашина была остановлена для ремонта. Оставшуюся часть пути пятиклассники проделали пешком, затратив на это времени в 3 раза больше, чем они ехали на автомашине. Во сколько раз быстрей ехали пятиклассники на автомашине, чем шли пешком?

6. Сколько квадратов «спрятано» на рисунке?

Математические олимпиады по лигам. 5-9 классы - i_020.png

7 тур

1. На доске написаны шесть чисел: 1, 2, 3, 4, 5, 6. За один ход разрешается к любым двум из них одновременно добавлять по единице. Можно ли за несколько ходов все числа сделать равными? Ответ обоснуйте.

2. Разрежьте квадрат на пять треугольников так, чтобы площадь одного из этих треугольников равнялась сумме площадей оставшихся.

3. Дорога от дома до школы занимает у Пети 20 мин. Однажды по дороге в школу он вспомнил, что забыл дома ручку. Если теперь он продолжит свой путь с той же скоростью, то придет в школу за 3 мин до звонка, а если вернется домой за ручкой, то, идя с той же скоростью, опоздает к началу урока на 7 мин. Какую часть пути он прошел до того, как вспомнил о ручке?

4. 20 черных коров и 15 рыжих дают за неделю столько молока, сколько 12 черных коров и 20 рыжих. У каких коров больше удои: у черных или у рыжих? Ответ обоснуйте.

5. Если написать любое двузначное число, а затем поменять местами в этом числе цифры и вычесть из большего числа меньшее, то получится число, которое делится на 9. Почему?

6. Два лесоруба, Никита и Павел, работали вместе в лесу и сели завтракать. У Никиты было 6 лепешек, у Павла – 9. Тут к ним подошел охотник.

– Вот, братцы, заблудился в лесу, до деревни далеко, а есть очень хочется; поделитесь со мною хлебом-солью!

– Ну, что ж, садись; чем богаты, тем и рады, – сказали Никита и Павел.

15 лепешек были разделены поровну на троих. После завтрака охотник пошарил в карманах, нашел 15 р. и сказал:

– Не обессудьте, братцы, больше при себе ничего нет. Поделитесь, как знаете!

Охотник ушел, а лесорубы заспорили. Никита говорит:

– По-моему, деньги надо разделить поровну!

А Павел ему возражает:

– За 15 лепешек 15 р. И на лепешку приходится по рублю. У тебя было 6 лепешек, тебе 6 р., у меня 9 лепешек, мне 9 р.!

Кто из них сделал правильный расчет?

8 тур

1. Число увеличено на 25 %. На сколько процентов нужно уменьшить результат этого увеличения, чтобы получить первоначальное число?

2. Три бегуна – Антон, Сережа и Толя – участвуют в беге на 100 м. Когда Антон финишировал, Сережа находился в десяти метрах позади него, а когда финишировал Сережа – Толя находился позади него в десяти метрах. На каком расстоянии друг от друга находились Толя и Антон, когда Антон финишировал? (Предполагается, что все мальчики бегут с постоянными, но, конечно, не равными скоростями.)

3. Директор завода, рассматривая список телефонных номеров и фамилий своих сотрудников, заметил определенную взаимосвязь между фамилиями и номерами телефонов. Вот некоторые фамилии и номера телефонов из списка:

Математические олимпиады по лигам. 5-9 классы - i_021.png

Какой номер телефона у сотрудника по фамилии Железнов?

4. На столе лежат в ряд пять монет: средняя – вверх орлом, а остальные – вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом? Ответ обоснуйте.

5. Точки К и М – середины сторон квадрата. Какую часть площадь закрашенного треугольника составляет от площади всего квадрата?

Математические олимпиады по лигам. 5-9 классы - i_022.png

6. Сестре втрое больше лет, чем было брату тогда, когда сестре было столько лет, сколько брату теперь. Когда брату будет столько лет, сколько сестре сейчас, им обоим вместе будет 28 лет. Сколько сейчас лет сестре и сколько брату?

9 тур

1. По углам бассейна квадратной формы стоят четыре столба. Потребовалось расширить этот бассейн так, чтобы площадь его стала в два раза больше, а форма осталась бы квадратной. Можно ли это сделать, не убирая столбов, причем так, чтобы все столбы остались стоящими по периметру бассейна? Если можно, то как?

2. Докажите, что среди шести любых целых чисел найдутся два, разность которых делится на 5.

7
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело