В небе завтрашнего дня - Гильзин Карл Александрович - Страница 16
- Предыдущая
- 16/57
- Следующая
Но нас сейчас интересует другое. Если в пограничном слое скорость движения частиц воздуха уменьшается из-за силы вязкости, значит, их кинетическая энергия уменьшается, как и при простом торможении. Куда же она девается? Ведь исчезнуть энергия не может? Нет. Она переходит в тёпло, точно так же, например, как переходит в тепло работа трения твердых тел.
Значит, вся поверхность быстродвижущегося тела оказывается окруженной раскаленным воздухом. Правда, температура задней кромки крыла будет несколько меньше, чем передней. Ведь спереди воздух останавливается, тормозится полностью, а сзади его скорость лишь постепенно уменьшается до нуля. Но все же спасительной отдачи воздуху тепла от задней поверхности крыла не происходит.
Так рост скорости полета выдвигает перед авиацией поистине грозную перспективу: оказывается, скоростной полет должен неизбежно протекать в раскаленном воздухе. Пусть на улице мороз в 60 или даже больше градусов, каким он бывает на высоте 10–11 километров, — самолет, летящий со сверхзвуковой скоростью, будет находиться как бы в раскаленной печи. И чем больше скорость полета, тем выше температура в этой печи.
Но разве может самолет совершить такой полет хоть сколько-нибудь длительный? Металлы, из которых он построен, расплавятся или даже испарятся; а ведь им достаточно только потерять свою прочность, что всегда бывает при нагреве, чтобы самолет рассыпался в воздухе. Летчик в кабине такого самолета неминуемо погибнет от жары. Все оборудование самолета — электрическое, радио, электронное, гидравлическое — выйдет из строя. Топливо воспламенится, резина сгорит, различные рабочие жидкости испарятся. Да и как тут не вспомнить о судьбе мириадов небесных камней, с огромной, космической скоростью врывающихся в земную атмосферу и сгорающих, Испаряющихся в ней, — «падающих звезд»!
А ведь судьбу метеоритов разделило уже немало их искусственных собратьев — высотных ракет и искусственных спутников Земли. Они закончили свой жизненный путь в плотных слоях атмосферы, врываясь в нее с огромной скоростью на обратном пути из космоса. Земной поверхности достигали в этих случаях только отдельные оплавленные обломки, немые свидетели полыхавшего в небе пламени. Багровое пламя, лизавшее стенки кораблей-спутников «Восток», видели их космические капитаны, когда направляли свои корабли на посадку. Это пламя все-таки появлялось, хотя предварительно скорость кораблей была намного уменьшена с помощью тормозных двигателей. Скорость полета самолетов неумолимо и быстро приближается к этой роковой черте. В рекордных полетах самолета «Х-15», о которых говорилось выше 2*, температура обшивки достигала 760°!
Так на пути развития авиации возникает новый и, судя по всему, страшный «барьер», получивший название «теплового». Но этот новый барьер имеет одно принципиальное отличие от старого, звукового. «Звуковой барьер» действительно напоминает барьер тем, что связан с узкой зоной скоростей полета: перешагни через эту опасную полосу — и барьер позади.
Новый «барьер» гораздо хуже. Это скорее не барьер, а огромная гора, круто поднимающаяся в небо, и чем дальше (то есть чем больше скорость полета) — тем круче, так что и конца ей нет.
Как же преодолеть «тепловой барьер»? Какие пути решения этой сложнейшей задачи видит авиационная наука, какие средства она для этого предлагает?
Существует одно радикальное средство — высота полета. Чем выше, тем больше допустимая скорость.
Легко понять, почему это так. Тепло, сообщаемое воздухом поверхности быстролетящего самолета, представляет собой, по существу, как уже говорилось выше, кинетическую энергию мириадов частиц воздуха, тормозящихся у этой поверхности. Но ведь если число этих частиц действительно огромно у земли, в плотной атмосфере, то с высотой оно быстро уменьшается. Поэтому уменьшается и тепло, сообщаемое самолету в результате аэродинамического нагрева. Дело не меняется даже от того, что на больших высотах скорость беспорядочного, так называемого теплового движения каждой частицы оказывается очень большой, то есть температура воздуха — очень высокой, достигающей сотен и даже тысяч градусов. Если бы воздух при такой температуре был к тому же и плотным, то на этих высотах стал бы невозможен не только скоростной, но и вообще любой полет. Эта «огненная завеса» заставила бы надолго, если не навсегда, распроститься с идеей межпланетного полета.
К счастью, дело обстоит иначе. Воздух на больших высотах крайне разрежен. Число частиц воздуха там так мало (оговоримся — не абсолютное число; даже на высотах 100–150 километров в 1 кубическом сантиметре все еще находятся сотни миллиардов молекул воздуха), что они могут сообщить поверхности самолета лишь ничтожное количество тепла. В то же время поверхность самолета излучает в этих условиях много тепла. Поэтому там, на большой высоте, «теплового барьера» не существует. Выше примерно 80-100 километров практически уже нет ограничения в скорости полета.
Понятно теперь, почему максимально допустимая скорость полета зависит от высоты — чем выше, тем она больше. Только на большой высоте можно летать со скоростью, значительно превышающей скорость звука. Но, к сожалению, на большой высоте не только можно, но и нужно летать быстро: при недостаточно высокой скорости горизонтальный полет становится невозможным, потому что не создается необходимой подъемной силы. Поэтому полет самолетов будущего может происходить лишь в определенной, узкой полосе высоты и скорости — ее так и называют обычно «коридором». Авиация борется за расширение «коридора» — в первую очередь это касается преодоления «теплового барьера».
Полет в «коридоре» возможен с любой скоростью, была бы только достигнута нужная высота. Но увеличение высоты полета далеко не всегда применимо. Ведь это требует огромных расходов топлива и затрат времени. А иногда и вообще высотный полет не может быть использован, например для ряда военных самолетов.
Авиация настойчиво ищет иных путей преодоления «теплового барьера». Пусть не полного, пусть барьер будет только отодвинут в область еще больших скоростей полета — одно это было бы серьезной победой. А такие «невидимые» победы авиация одерживает сейчас изо дня в день.
Обычные металлы, из которых строятся самолеты — легкие и прочные сплавы алюминия и магния, — теряют свою прочность при нагреве примерно до 200°. Это ограничивает уже сейчас рост скорости полета. Значит, надо искать другие конструкционные материалы, сохраняющие прочность при более высоких температурах. Разумеется, они должны быть и достаточно легкими.
1* Подробнее об этом см. главу XV.
2* По сообщению журнала «Интеравиа эр леттер», № 5036, 1962 г.
«Коридор» длительного полета самолетов.
Какие же новые жаропрочные материалы исследуют сегодня авиаконструкторы вместе с металлургами, чтобы сделать их основными конструкционными материалами авиации завтрашнего дня? Конечно, на первом месте стоит здесь титан и его сплавы. Не зря титан называют металлом будущего. Он всего примерно в полтора раза тяжелее алюминия, но зато сохраняет прочность до температуры 500–600°, что отодвигает «тепловой барьер» примерно с 2 тысяч километров в час до 3–4 тысяч.
Уже сейчас титан находит все большее применение в авиации, и не только для изготовления частей самолета, но и его двигателя. С наступлением «теплового барьера» воздух, проходящий по компрессору двигателя, приобретает температуру, достигающую и даже превышающую температуру газов перед турбиной современных турбореактивных двигателей. Нечего сказать, хороша «холодная» сторона двигателя, как обычно называют теперь переднюю его часть в отличие от «горячей», задней! Вот почему лопатки первых ступеней компрессора теперь все чаще изготовляют не из алюминия, а из титана. Задние же ступени имеют зачастую лопатки из жаропрочной нержавеющей стали.
- Предыдущая
- 16/57
- Следующая