Электричество в жизни рыб - Лаздин Александр Владимирович - Страница 9
- Предыдущая
- 9/21
- Следующая
Рис. 14. Ампулы Лоренцини а — расположение ампул Лоренцини на теле морской лисицы (точками на концах трубочек отмечены места, где ампулы открываются наружу), б — две ампулы Лоренцини у акулы (сверху отверстия на коже)
Однако только последующее изучение поведения рыб, в том числе эксперименты Дийкграфа и Кальмджина, о которых уже упоминалось выше, позволили выяснить электрорецепторное назначение ампул Лоренцини. Специальные электрофизиологические исследования подтвердили высокую чувствительность ампул к электрическим полям — приблизительно 0,1 мкВ на 1 см. Если один электрод (зонд) помещался в проток ампулы, а другой — на тело рыбы, то для «срабатывания» ампулы было достаточно действия электрического тока силой всего в 0,005 мА. Если же зонд смещали в сторону от поры ампулы всего на 0,5 мм, то для достижения такого же результата силу тока приходилось заметно увеличивать. Это свидетельствует о том, что электрический ток в основном протекает по трубочке ампулы.
Описываемое явление хорошо согласуется с морфологическими и биофизическими свойствами ампул Лоренцини. Установлено, что электрическое сопротивление стенок ампулы в 160 тыс. раз больше сопротивления желе, заполняющего ее. Электропроводность морской воды и желе в протоках ампулы приблизительно одинакова, остальных частей тела рыбы — примерно в 2 раза меньше. Доказано, что протоки ампул Лоренцини являются хорошо изолированными проводниками, по которым электрический ток передается с небольшими потерями. В связи со специфическим строением ампулы электрические разряды высокой частоты затухают в ее канале быстрее, чем разряды низкой частоты. Поэтому длинные ампулы Лоренцини могут воспринимать в основном низкочастотные разряды, а короткие — высокочастотные Таким образом, ампулы Лоренцини представляют собой электрорецепторы. Однако они чувствительны и к другим раздражителям, прежде всего к механическим воздействиям. Возможно, что эти ампулы являются не только электрорецепторами, но и механорецепторами.
Как уже говорилось, высокой чувствительностью к электрическому току обладают, кроме акул и скатов, слабоэлектрические рыбы, например гнатонемус, гимнарх. У этих рыб имеются электрические рецепторы различных типов, образованные подобно ампулам Лоренцини, из органов чувств системы боковой линии. Наиболее чувствительны к электрическому раздражению ампулярные рецепторы: электрорецепторы гимнарха воспринимают напряженность электрического поля в 0,01 мкВ на 1 см.
Все исследованные электрические рецепторы слабоэлектрических рыб спонтанно генерируют импульсы определенной частоты — осцилляции Они не зависят от разрядов электрических органов рыб и сохраняются даже в том случае, если кусочки кожи, на которых расположены рецепторы, изолированы. Однако по мере приближения к рецепторам объектов, создающих внешнее электрическое поле, частота осцилляций изменяется.
Функции электрических рецепторов слабоэлектрических рыб различны. Одни непрерывно работают как гальванометры (как бы замеряя величину тока); другие же воспринимают только изменение напряжения внешнего электрического поля, определяя его фазу, т. е. работают аналогично осциллографу.
Каким же образом осуществляется анализ информации, поступающей к рыбам извне и воспринимаемой их электрическими рецепторами? Известно, что органами боковой линии рыб управляют мозжечок и продолговатый мозг. Именно в них осуществляется анализ электрической информации. В связи с этим мозжечок у некоторых слабоэлектрических рыб исключительно сильно развит Так, у мормируса относительная величина мозжечка больше, чем у любых других позвоночных животных. Он наиболее развит у сомовых рыб, которые, как и слабоэлектрические рыбы, обладают электрорецепторами. Степень развития «электрических» долей мозга слабоэлектрических и неэлектрических рыб хорошо видна на рис. 15.
У некоторых электрических и слабоэлектрических рыб, обладающих «электрическим мироощущением», относительно развиты боковые доли продолговатого мозга. Изучение этих отделов с точки зрения электрофизиологии позволило выявить несколько типов нейронов, по-разному реагирующих на внешнее электрическое поле, на движение в воде предметов с разной электропроводностью, а также различно адаптирующихся к этим раздражителям Оказалось, что в зависимости от движения объектов активность одних нейронов электрического центра повышалась, а других, наоборот, понижалась. Благодаря этому рыба получала информацию о положении и перемещении в воде разнообразных объектов.
Для передачи любой информации от воспринимающих элементов к анализатору необходим соответствующий код — система условных обозначений. У человека это слова, отдельные фразы, термины, буквы, цифры, знаки и т. д. У рыб подобная система неизмеримо проще, но тем не менее нервные волокна, передающие электрическую информацию от воспринимающих рецепторов в нервные центры, «кодируют» ее разнообразными способами. Это отчасти можно объяснить тем, что электрорецепторы работают в комплексе с электрическими органами.
При одновременной работе электрических органов и электрорецепторов кодирование информации происходит довольно сложным путем. Так, представители гимнотовидных рыб в основном используют два типа кодирования:
«числовое» и «вероятностное». У этих рыб с низкочастотной разрядной деятельностью (3—5 импульсов в секунду) нервные волокна как бы отвечают на каждый импульс цепочкой нервных импульсов. У электрического угря, например, эта цепочка состоит из 15 импульсов в секунду. Кодирование информации об изменении интенсивности внешнего электрического поля осуществляется путем изменения количества импульсов в цепочке — «числовое».
Рис. 15 «Электрические» зоны мозга слабоэлектрических рыб (заштрихованные участки)
а — мормирус,
б — гимнарх,
в — сом,
1 — позвоночный столб,
2 — нерв боковой линии,
3 — зрительный нерв
4 — обонятельный нерв
У гимнотовидных рыб с высокой частотой разрядной деятельности электрических органов обнаружен другой способ кодирования — «вероятностный». При каждом электрическом импульсе импульсы в нервном волокне либо отсутствуют вообще, либо возникает один импульс (у некоторых рыб может возникнуть несколько). Кодирование электрической информации осуществляется в результате возникновения нервного импульса в зависимости от изменения интенсивности внешнего электрического поля.
Есть еще один способ кодирования — «условно-частотный». Нервные волокна проявляют спонтанную активность, не согласованную с разрядами электрического органа. Если во внешнее электрическое поле попадают какие-либо объекты, нервные волокна определенным образом изменяют частоту следования разрядов электрического органа.
В последнее время в СССР и за рубежом были проведены многочисленные исследования, посвященные кодированию электрической информации нервными волокнами. Интерес к этому вопросу закономерен. Зная механизм кодирования, можно понять, как протекает в организме анализ поступающей извне информации и каким образом раздражители различаются во времени и пространстве.
Рыбы воспринимают электрическое поле постоянного тока обычно в виде ориентировочной двигательной реакции (они вздрагивают при включении и выключении тока). При увеличении напряженности поля наступает оборонительная реакция — так называемая стадия отпугивания: рыба сильно возбуждается и пытается выйти из зоны действия поля. Если напряженность увеличить еще больше, происходит анодная реакция. При дальнейшем повышении напряженности наблюдается электронаркоз: рыба теряет равновесие, подвижность и перестает реагировать на внешние раздражители Еще большее повышение напряженности электрического поля вызывает гибель рыбы.
- Предыдущая
- 9/21
- Следующая