Хочу все знать 1970 - Барский Юрий Петрович - Страница 35
- Предыдущая
- 35/105
- Следующая
Всем, конечно, знакома обыкновенная батарейка от карманного фонаря. В батарейке происходят те же явления, что и при горении угля. Батарейка, или, что одно и то же, гальванический элемент, состоит из двух разных стержней (электродов), помещённых в электролит, то есть в среду, проводящую электрический ток. Один электрод цинковый, а другой — угольный. Цинк, растворяясь в электролите, теряет электроны, уголь же их присоединяет. Если соединить полюса батарейки проводником, то по нему потёчет электрический ток.
Отличие этого процесса от горения угля в прямом смысле заключается в том, что при горении угля обмен электронами между углеродом и кислородом происходит сразу во всём пространстве. В батарейке же процесс обмена электронами между цинком и углём происходит в двух строго определённых местах: на поверхности отрицательного цинкового электрода и положительного угольного. Благодаря этому в батарейке создаётся порядок в движении электронов, то есть электрический ток.
Батарейка — очень удобный источник энергии. Он в особенности незаменим в тех случаях, когда потребляется мало электрической энергии, причём не непрерывно, а время от времени. А почему бы не построить уже сейчас электростанцию, работающую от батарей из таких элементов? Ведь их коэффициент полезного действия очень высок! К сожалению, сделать это нельзя, так как срок службы элементов невелик.
Идея создания электрического элемента возникла давно. Ещё в 1802 году изобретатель безопасной шахтёрской лампы Хэмфри Дэви высказал предположение, что химическую энергию, высвобождающуюся при окислении угля, можно непосредственно преобразовать в электрическую. К сожалению, Дэви не удалось изготовить такое устройство. Зато уже в 1839 году была продемонстрирована первая так называемая газовая батарея. В ней энергия реакции окисления водорода преобразовывалась непосредственно в электрический ток. Газовая батарея — это первый топливный элемент, где химическая энергия топлива непосредственно превращалась в электрическую.
Конечно, первый топливный элемент был очень несовершенен и обладал малой мощностью. Работы продолжались. И лишь совсем недавно были созданы промышленные топливные элементы. Какие же внутренние процессы сопровождают их работу?
Можно ли совершенно чистую воду, очень плохой проводник электрического тока, превратить в хороший проводник? Можно, и это очень легко сделать. Необходимо только растворить в ней небольшое количество поваренной соли. Водопроводная вода только кажется абсолютно чистой. На самом же деле она содержит небольшие количества растворённых солей, что и помогает ей проводить электрический ток. Вот почему иногда «дёргает» человека, прикоснувшегося мокрой рукой к электрическому выключателю, в особенности если выключатель в металлическом корпусе.
Водные растворы, которые проводят электрический ток, называются электролитами. Если через них пропускать электрический ток, то можно наблюдать различные интересные явления. Представьте себе, что в сосуд с электролитом из раствора сульфата меди опущены два медных электрода, присоединённых к электрической цепи с батареей. Один из электродов, тот, что соединён с отрицательным полюсом батареи, назван катодом. А тот, что с положительным — анодом. При пропускании электрического тока через некоторое время на катоде появится свежий слой меди, а анод постепенно будет растворяться. Может быть и по-другому: медь по-прежнему будет осаждаться на катоде, а на аноде появятся пузырьки кислорода. Всё зависит от материала анода, катода и от состава электролита.
Особый интерес представляет случай, когда электролит — раствор серной кислоты в воде, а электроды сделаны из платины. При пропускании электрического тока у электродов выделяются газы, причём у катода — водород, у анода — кислород. По мере течения процесса уровень электролита непрерывно понижается, то есть концентрация серной кислоты возрастает. В конце концов остаётся чистая серная кислота. Куда же делась вода?
Оказывается, в процессе электролиза она разложилась на составные элементы — водород и кислород, которые и выделялись у электродов.
Долгое время оставалось неясным: каким образом переносятся электрические заряды в электролитах? Объяснение было найдено в 1887 году, когда известный шведский химик Аррениус разработал свою знаменитую теорию электролитической диссоциации.
Основной смысл этой теории в том, что при растворении вещества, например серной кислоты, в воде в получившемся электролите образуется огромное количество положительно и отрицательно заряженных частичек — ионов. Если этот электролит подключить к электрической цепи с батареей, ионы приходят в движение, причём положительные движутся к катоду, а отрицательные к аноду. А это не что иное, как упорядоченное движение заряженных частиц, то есть электрический ток. И вот ионы, эти электрические «странники», прибыли к «месту назначения»: один к аноду, другой к катоду. Что же происходит дальше? В результате химической реакции на аноде образуется кислород. На катоде — водород.
Теперь ясно, что конечный результат электролиза водного раствора серной кислоты — разложение воды на кислород и водород. Энергия для этого берётся от внешнего источника тока, то есть от батареи.
А возможен ли обратный процесс: соединение водорода с кислородом с образованием воды? Да, возможен. Химики знают: если поджечь смесь этих газов, то раздастся сильный взрыв. Химическая энергия выделится в виде теплоты и звука. Но если этот же процесс будет протекать в электрохимических элементах, то химическая энергия будет непосредственно превращаться в электрическую. В этом-то и состоит принцип действия так называемого водородно-кислородного топливного элемента.
Как же он устроен?
Представьте себе, в сосуд с электролитом, то есть с водой, разбавленной серной кислотой, опущены два пористых, как губка, платиновых электрода. К одному из электродов под давлением подаётся кислород, а к другому — водород, которые просачиваются в электролит. Проходя через электрод, нейтральные атомы кислорода захватывают электроны из металла и превращаются в отрицательные ионы, переходя в электролит. Здесь они двигаются к другому электроду, достигают его, отдают свои электроны и, снова превращаясь в нейтральные атомы кислорода, соединяются с водородом, который подаётся под давлением. В результате этой реакции образуется вода и выделяется энергия, которая расходуется на создание потока электронов во внешней цепи, то есть электрического тока. Теперь достаточно подключить лампочку к платиновым электродам, и она ярко вспыхнет.
Хорош ли такой элемент? Безусловно: ведь его коэффициент полезного действия уже не 30—40%, а 70—80!
Если соединить много таких элементов в одну батарею, то можно получить достаточную мощность для вращения, например, какого-либо двигателя. Но у водородно-кислородного топливного элемента есть крупный недостаток: он может эффективно работать только на очень чистом водороде, который стоит дорого. Значит, и электроэнергия от такого элемента дорога. Поэтому-то вместо водорода нужно применять более дешёвое топливо. И оно было найдено. Например, использовался газ пропан и другие углеродистые газы. Теперь пробуют использовать воздух вместо кислорода: это значительно дешевле. И, наконец, самым дешёвым был бы элемент, работающий на природном газе и обычном воздухе.
Исследования продолжаются. Уже немало создано и успешно работают различные топливные элементы. Выдвигаются и совсем оригинальные идеи, например, создания так называемого биохимического топливного элемента. В нём к аноду подаются бактерии и питательная среда, а к катоду — кислород. Бактерии окисляют питательные вещества, а высвобождаемая энергия преобразуется непосредственно в электричество.
- Предыдущая
- 35/105
- Следующая