Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Беллос Алекс - Страница 3
- Предыдущая
- 3/88
- Следующая
Однажды я разговаривал с одной бразильской учительницей, которая долго работала среди аборигенов. Она заметила, что индейцы воспринимают постоянные вопросы о числе детей, которые им задают приезжие, как некую странную манию, тогда как на самом деле гости задавали этот вопрос, просто желая проявить вежливость. Что толку пересчитывать детей? У индейцев такие вопросы вызывают сильное недоверие.
Первые письменные упоминания о мундуруку относятся к 1768 году, когда белые поселенцы заметили одного из них на берегу реки. Спустя столетие францисканские миссионеры основали на землях мундуруку свою миссию. В конце XIX века во время каучукового бума, когда здесь появились охотники за каучуком, белые стали больше контактировать с мундуруку. Однако племя по-прежнему живет в относительной изоляции, но, как и многие другие группы индейцев, долгое время общавшиеся с чужаками, они стали носить в основном западную одежду — футболки и шорты. В конце концов в их мир с неизбежностью войдут и другие стороны современной жизни, такие как электричество и телевидение. И конечно, числа. На самом деле некоторые мундуруку, живущие на границах их территории, выучили португальский, национальный язык Бразилии, и могут считать по-португальски.
— Они считают ит, dois, tres и далее до сотни и более, — рассказывает Пика. — Но когда у них спрашиваешь: «Кстати, сколько будет пять минус три?» — он утрированно пожимает плечами на французский манер, — ответа не дождешься.
Свои исследования в тропических лесах Пика проводит, используя лэптоп, который работает от солнечных батарей. Поддерживать оборудование в рабочем состоянии там исключительно непросто из-за жары и влажности — но еще сложнее может оказаться собрать вместе всех участников исследования. Как-то раз старейшина племени потребовал, чтобы Пика съел большого красного муравья sauba, — только после этого он был готов разрешить ему расспрашивать о чем-то ребенка. Верность науке одержала верх, и Пика, скорчив гримасу, с хрустом разгрыз и проглотил насекомое.
Цель, ради которой изучаются математические способности людей, умеющих считать лишь на пальцах одной руки, состоит в том, чтобы понять природу свойственного нам фундаментального восприятия чисел на интуитивном уровне. Пика хотел знать, где лежат универсалии, присущие всем людям, а где — результат воздействия культуры. В одном из самых увлекательных экспериментов Пика исследовал пространственное восприятие чисел индейцами. Как они представляют себе расположение чисел вдоль прямой? В современном мире мы постоянно сталкиваемся с линейным упорядочением чисел — на рулетках, линейках, графиках, в виде нумерации домов вдоль улицы. Поскольку у мундуруку чисел как таковых нет, Пика в своих опытах использовал наборы точек на экране. Каждому добровольному испытуемому на экране показывали неразмеченную прямую. Слева от прямой располагалась одна точка, а справа — десять точек. Затем испытуемому показывали случайные группы, содержащие от одной до десяти точек. Для каждого набора предлагалось указать, где на прямой, по мнению испытуемого, эти точки должны располагаться. Пика передвигал туда курсор и кликал. Анализируя статистику этих кликов, он мог в точности сказать, как мундуруку размещают на прямой числа от единицы до десяти.
Когда тот же тест предлагается взрослым американцам, они располагают числа вдоль прямой на равных интервалах. Тем самым они воспроизводят числовую прямую, которую все мы изучали в школе, — на ней соседние числа находятся друг от друга на одинаковых расстояниях, как на линейке. Однако мундуруку отвечали совсем по-другому. Они считают, что сначала интервалы между числами больше, а потом становятся все меньше и меньше по мере того, как числа растут. Например, расстояния между отметками, соответствующими одной точке и двум точкам, и между отметками, соответствующими двум точкам и трем точкам, оказались намного больше, чем расстояние между отметками, соответствующими семи и восьми точкам или восьми и девяти точкам.
Эти результаты оказались довольно неожиданными. Вообще говоря, тот факт, что числа разнесены на равные расстояния, считается очевидным. Нас этому учат в школе, и мы легко это воспринимаем, на этом основаны все измерения и все научное знание. И тем не менее для мундуруку мир устроен по-другому. Они представляют себе величины совершенно иным способом.
Если числа нанесены на линейку равномерно, то такая шкала называется линейной. Если числа располагаются все теснее по мере их возрастания, то такая шкала называется логарифмической[1]. Оказалось, что логарифмический подход присущ не только индейцам Амазонии. У всех у нас от рождения имеется подобное восприятие чисел. В 2004 году Роберт Сиглер и Джули Бут из Университета Карнеги Меллон в Пенсильвании провели аналогичный эксперимент с числами на прямой среди детей из группы детского сада (со средним возрастом 5,8 года), первоклассников (6,9 года) и второклассников (7,8 года). Результаты показали, каким образом практика счета оказывает влияние на наше интуитивное восприятие. Детсадовские дети, у которых не было никакого систематического математического образования, располагали числа логарифмически. К первому году в школе, когда учеников обучают словам и символам для обозначения чисел, шкала выравнивается. И ко второму классу числа наконец располагаются равномерно вдоль прямой.
Почему индейцы и дети полагают, что большие числа сидят ближе друг к другу, чем меньшие числа? Объяснение этому простое. Как мы уже говорили, во время экспериментов добровольным участникам показывали наборы точек и спрашивали их, где — по их мнению — данный набор должен располагаться на прямой линии, в левой части которой поставлена одна точка, а в правой части — десять точек. (В эксперименте с детьми речь шла о 100 точках.) Представьте себе, что мундуруку видит перед собой пять точек. Он внимательно их рассмотрит и обнаружит, что пять точек в пять раз больше, чем одна точка, но десять точек всего в два раза больше, чем пять точек. И мундуруку, и дети, по-видимому, принимают решения о том, как расположены числа, основываясь на оценке величин. При этом если рассматривать именно эти оценки, то представляется вполне логичным, что расстояние между пятеркой и единицей намного больше, чем расстояние между десяткой и пятеркой. Таким образом, если вы делаете заключения, основываясь на оценках, то вы всегда получите логарифмическую шкалу.
Пика убежден: понимание величин в терминах их примерных оценок — врожденное свойство нашего интуитивного восприятия. Действительно, люди незнакомые с числами — например, индейцы и маленькие дети — просто не умеют воспринимать мир иначе. Напротив, восприятие величин в терминах точных значений — не врожденное свойство, а продукт культуры. По мнению Пика, ведущая роль, исходно отводимая приближениям и оценкам по сравнению с точными значениями, определяется тем, что оценки гораздо важнее для выживания в дикой природе, чем способность к точному счету. При неожиданной встрече с вооруженными копьями врагами требуется немедленно оценить — кого больше — своих или чужих. При взгляде на два дерева требуется сразу оценить, на каком из них больше плодов. Ни в том ни в другом случае нет необходимости в пересчете всех врагов или всех плодов по отдельности. Ключевой момент состоит в способности быстро оценить приближенное количество.
Логарифмическая шкала также хорошо отвечает нашему восприятию расстояния (и, возможно, поэтому оно выглядит столь противоречащим интуиции). Она учитывает законы перспективы. Например, если мы смотрим на дерево, находящееся на расстоянии 100 метров от нас, и на другое дерево, находящееся в 100 метрах позади первого, то вторые 100 метров кажутся короче. Для мундуруку идея о том, что каждые 100 метров должны выглядеть как одно и то же расстояние, отражает их искаженное восприятие окружающего мира.
Итак, точные числа отвечают линейной шкале, противоречащей нашему интуитивному логарифмическому восприятию. В самом деле, наше совершенное владение точными числами означает, что логарифмическое восприятие в большинстве ситуаций оказывается подавленным. Но оно не исчезло вовсе. Мы существуем, сохраняя как линейное, так и логарифмическое восприятие величин. Например, чувство времени часто логарифмическое. Я помню, в детстве годы проходили медленно, а сейчас они просто летят. И наоборот — бывает, кажется, вчерашний день длился намного дольше, чем вся последняя неделя. Глубоко встроенный в нас логарифмический инстинкт проступает наружу наиболее явственно, когда дело доходит до очень больших чисел. Например, всем понятно различие между единицей и десятью. Исключительно маловероятно, чтобы мы спутали пинту пива с десятью пинтами пива. А как насчет различия между миллиардом галлонов воды и десятью миллиардами галлонов воды? Несмотря на то что разница колоссальна, мы склонны воспринимать обе этих величины как довольно близкие — просто как очень большое количество воды. Подобным же образом словами «миллионер» и «миллиардер» бросаются почти как синонимами, как если бы не было особой разницы между очень богатыми и очень-очень богатыми. Однако же миллиардер в тысячу раз богаче миллионера. Чем больше становятся числа, тем более близкими (тесно сидящими на шкале) они воспринимаются.
1
На самом деле для получения логарифмической шкалы требуется, чтобы числа усаживались теснее по вполне определенному закону.
- Предыдущая
- 3/88
- Следующая