Выбери любимый жанр

В нашей галактике - Мухин Лев Михайлович - Страница 4


Перейти на страницу:
Изменить размер шрифта:

4

Итак, посмотрим, как ведут себя облака газопылевой материи в Галактике. Почему именно облака? Это достаточно сложный вопрос. Теоретические расчеты показывают, что изначально однородная диффузная материя в конце концов разбивается на отдельные сгущения, которые и получили название газопылевых облаков. Сейчас нам с вами придется говорить о непростых вещах, происходящих в мире звезд. И поэтому мы должны будем обратиться к физике. Эта наука (вспомним мнение Р. Фейнмана) претендует на то, чтобы объяснить все явления, происходящие в природе. Но современной физике немногим больше 200 лет (если приурочить ее рождение к работам великого И. Ньютона), а природа «работает» миллиарды лет. Поэтому нет ничего удивительного в том, что число загадок, оставшихся для физиков к сегодняшнему дню, не создает проблемы безработицы в этой области.

В физике есть такое понятие, как неустойчивость. Самый простой пример неустойчивости: шар на вершине арки. Ясно, что при определенной сноровке мы можем добиться того, чтобы шар остался в верхней точке арки. Но его положение будет неустойчивым. Достаточно легкого прикосновения, и шар покатится вниз, особенно в том случае, если арка крутая.

Наше облако при определенных условиях тоже может стать неустойчивым. Что это значит? Огромное облако размером, скажем, в десять световых лет начнет вдруг сжиматься под влиянием собственной гравитации. Через некоторое время оно разобьется на ряд плотных (конечно, относительно плотных) сгустков. Астрофизики считают, что именно из этих сгустков и рождаются отдельные звезды. Но собственно говоря, почему из холодного облака при сжатии должна образоваться горячая звезда?

Попробуем разобраться в этом вопросе.

Уже сотни лет назад на Зондских островах и в особенности на Калимантане туземцы умели добывать огонь при помощи устройства, позже получившего название пневматической зажигалки. Что это такое? В деревянном цилиндре высверливалось отверстие небольшого диаметра, в котором могла перемещаться палочка, а на конце ее прикреплялся кусочек трута. Зазор между стенками отверстия и палочкой был очень маленький. Когда палочку вставляли в отверстие и быстро опускали, трут загорался. Почему? Да потому, что воздух, находившийся внутри, сжимался, а энергия сжатия превращалась в тепло. Кстати, на этом же принципе — превращения энергии сжатия газа в теплоту — работают дизельные двигатели. Здесь есть еще один тонкий момент. Чтобы получить достаточно высокую температуру, палочку нужно было двигать быстро, иначе тепло успело бы рассеяться.

Законы физики одинаковы и для пневматической зажигалки малайцев, и для двигателя Дизеля, и для огромного межзвездного облака. Вот почему при сжатии облако начнет нагреваться. Вот почему возможно образование горячей звезды из холодного облака. Ну а энергия сжатия облака во многие миллиарды раз больше, чем во всех дизельных двигателях земного шара.

Энергия сжатия превращается в излучение, которое может свободно выходить из облака в космическое пространство, пока плотность облака невелика. Поэтому сначала и температура облака повышается очень незначительно. Но чем сильнее сжатие, тем больше плотность вещества и тем труднее излучению выходить из облака.

И когда на определенном этапе плотность увеличивается, облако становится непрозрачным, а температура его внутренних областей начинает повышаться. Что такое непрозрачность и почему должна повышаться температура?

Давайте включим электрическую лампочку. Она сконструирована так, чтобы нить накаливания работала как можно дольше. Когда лампочка включена, она горячая, ее не возьмешь в руки: она и светит и греет. Но воздух комнаты прозрачен и для видимого света, и для теплового излучения лампочки. Если теперь завернуть лампочку в хороший теплоизолирующий материал, например в асбест, выход тепловой энергии будет затруднен, температура лампочки повысится и она перегорит быстрее. Асбест непрозрачен для излучения.

Так же и в случае облака. Только роль асбеста здесь играют достаточно плотные наружные слои. А внутри облака — горячее ядро — протозвезда. Но она еще находится внутри родительского облака. Если провести здесь аналогию с живой материей, то протозвезду можно сравнить с клеточным ядром, окруженным протоплазмой.

Какова может быть величина протозвезды или прото-Солнца? Мы говорили о том, что начальные размеры сжимающегося облака велики. Но когда наступило время формирования прото-Солнца, ядра нашей Солнечной системы, облако занимало место протяженностью «всего» до орбиты Плутона.

А затем начали происходить удивительные вещи. Лишь за 10 лет прото-Солнце сжалось до орбиты Меркурия, то есть примерно в сто раз. Именно тогда оно и стало непрозрачным к собственному излучению. Энергия сжатия оказалась «запертой» внутри прото-Солнца, и в его жизни наступила знаменитая «стадия Хаяши» — этап развития протозвезд, получивший свое название в честь известного японского астрофизика С. Хаяши.

Поскольку сброс энергии, которая выделяется при сжатии, из-за непрозрачности затруднен, сжатие резко замедлялось. Но энергию-то сбрасывать все-таки надо. Так вот, Хаяши и показал, что в этой стадии сжатия энергия сбрасывается при помощи конвекции. Да, да, той самой конвекции, которую мы каждый день видим, когда кастрюля с водой или чайник стоят на плите и более горячие слои воды поднимаются снизу вверх. И в нашем случае внутренние, более горячие участки протозвезды начинают перемещаться наверх, а на их место стремится газ из наружных, более холодных районов. В это время температура протозвезды достигает нескольких тысяч градусов.

Понятно, что такой процесс, как конвекция, не может сразу охватить все прото-Солнце: она развивается постепенно даже в таком небольшом объеме, как чайник. Что здесь говорить о прото-Солнце! Но когда вся протозвезда вовлекается в этот процесс, энергия сжатия получает возможность «выйти наружу» и переизлучиться в мировое пространство. Поэтому-то развитие конвекции внутри прото-Солнца сопровождается короткой вспышкой светимости.

Уже после этого продолжается медленное сжатие охваченной конвекцией протозвезды. Радиус ее медленно уменьшается, неуклонно стремясь к сегодняшнему значению радиуса Солнца. Ну а поскольку температура поверхностных слоев протозвезды постоянна, то светимость ее будет падать. Эта стадия, как показывают расчеты, занимает уже десятки миллионов лет.

Наконец сжатие прекращается и прото-Солнце становится стабильной, обычной звездой, Солнцем, таким, каким мы его видим сегодня. Как говорят астрономы, оно садится на «главную последовательность» — столбовую дорогу жизни большинства звезд. Желтый карлик родился.

То, что происходило в природе в течение миллионов лет, я попытался изложить на нескольких страницах. Конечно, такой спринтерский темп заставлял опускать многие важные вещи. Здесь уж ничего не сделаешь. Важно то, что для современной физики возможно иногда почти, а иногда совершенно точно указать, что происходило во Вселенной за сотни тысяч световых лет от нас, что происходило миллиарды лет тому назад, что произойдет через миллиарды лет.

Итак, картина рождения Солнца, пусть несколько схематичная, нарисована. Но ведь это теория, и все то, о чем мы сейчас говорили, базировалось на оценках, приведенных, в частности, в замечательной книге советского астрофизика И. Шкловского «Звезды, их рождение, жизнь и смерть». А соответствуют ли эти оценки действительности? Можно ли наблюдать все эти процессы, эти вспышки «закипающих» звезд в Галактике? Да. Астрономам известны звезды на небе, хаотически меняющие свой блеск, а это как раз и может свидетельствовать о том, что их атмосферы находятся в бурной конвективной стадии. Звезды эти получили название «звезд типа Τ Тельца». Таким образом, у нас есть все основания считать, что этот «сценарий» рождения Солнца действительно имел место около 5 миллиардов лет тому назад.

Читателям, которые захотят более подробно узнать о рождении звезд и посерьезнее познакомиться с астрофизикой, я посоветую обратиться к упомянутой уже книге И. Шкловского.

4
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело