Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем - Шпорк Петер - Страница 12
- Предыдущая
- 12/52
- Следующая
«Наше исследование показывает, что метилирование ДНК — ключевой компонент эпигенетической сети, управляющей репродуктивным разделением функций медоносных пчел», — считают ученые. Попутно, как надеются исследователи, найден надежный способ выращивания пчелиных маток на случай вымирания целых популяций из-за пчелиных болезней — генно-инженерное отключение фермента DNMT-3.
Особенно важным представляется австралийцам теоретическое значение их исследования: эпигенетический контроль развития пчелиных маток — одно из лучших до сих пор обнаруженных свидетельств, что питание организма может перепрограммировать его геном.
Не исключено, что речь идет лишь об одном компоненте питания, способном изменить жизненную ориентацию такого высокоразвитого организма, как пчела. Усвоенный в нужный момент, этот компонент помогает определить, какая из двух принципиально различных эпигенетических программ будет реализоваться на протяжении всей жизни организма.
Вероятно для нас, людей, судьба пчел — однозначная рекомендация уделять еще больше внимания здоровому питанию. Кто знает, как пища влияет на наши эпигеномы? Не стоит, впрочем, набрасываться на маточное молочко, хотя это вещество доступно в качестве пищевой добавки. К сожалению, до сих пор не сделан биохимический анализ «королевского желе». «Но в его биологической активности нет никаких сомнений», — полагает Рышард Малешка. Между прочим, у нас тоже есть фермент DNMT-3 — предположительно именно его активность снижается в организме пчелы благодаря маточному молочку. Любопытно, что этого белка нет у большинства прочих насекомых, которые с биологической точки зрения должны быть гораздо ближе к пчелам, чем люди.
Долины жизненного ландшафта
Джеймс Дьюи Уотсон и Фрэнсис Гэри Комптон Крик — эти имена известны сегодня каждому школьнику. Американцу Уотсону было всего 25, а Крику — 36 лет, когда 25 апреля 1953 года они опубликовали свою скромную статью. Она вышла в научном журнале «Нейчур» и называлась «Молекулярная структура нуклеиновых кислот». Ее содержание изменило мир.
«Мы хотим предложить модель структуры соли дезоксирибонуклеиновой кислоты (ДНК), — так начинают биохимики свою статью. А вслед за этим формулируют предмет исследований генетики на ближайшие полвека: — Эта структура обладает новыми свойствами, представляющими интерес для биологии».
Ученые разгадали великую загадку: как выглядит молекула, содержащая «монтажные схемы» всех биохимических элементов живого существа и передающая информацию его потомкам. Модель двойной спирали столь элегантна и убедительна, что ее сразу признали почти все ученые. Молекулярные биологи во всем мире начали изучать детали механизма наследования клеток. Они выясняли, как молекулы ДНК делятся и размножаются, как клетка переводит свой базовый код в белки и многое другое.
Расцвет генетики продолжался ровно пятьдесят лет. Последние тайны нашей ДНК ученые раскрывают в рамках проекта «Геном человека», завершенного в 2003 году, — проекта, который Клинтон, Вентер и Коллинз превозносили еще за три года до этого. В тот период большинство молекулярных биологов обратили свою энергию на достижение великой цели — расшифровку «книги жизни». Они не прислушивались ни к новым идеям, ни к особым мнениям, ни уж тем более — к теориям предшественников, не имевших ни малейшего понятия о ДНК.
Поэтому почти забылось имя еще одного прекрасного генетика из Великобритании — Конрада Хэла Уоддингтона, родившегося в 1905 году в Ившеме и скончавшегося в 1975 году в Эдинбурге. Последние годы жизни Уоддингтон возглавлял Институт генетики животных при Эдинбургском университете. Он был одним из ведущих онтогенетиков своего времени. Сегодня о вкладе Уоддингтона в науку напоминает носящая его имя медаль Британского общества онтогенетики.
В 1940-е годы Уоддингтон подробно изучил вопрос, как из оплодотворенной яйцеклетки постепенно развивается сложный организм, состоящий из многочисленных типов клеток. Он одним из первых высказал мысль о том, что биологическое развитие конкретного живого существа предопределено его геномом и, следовательно, — это результат эволюции. Поэтому первые этапы биологического развития протекают в соответствии с четко определенной программой. Но поскольку организм состоит из множества клеток, форма и функция каждой отдельной единицы наряду с ее генетическими факторами определяются также импульсами извне. В частности, толчок важным процессам дают сигнальные вещества других клеток. К этому добавляются различные воздействия окружающей среды.
По мнению британского ученого, в ядре каждой клетки гены, истинный облик которых ему еще не был известен, конкурируют с сигналами извне. Таким образом, окружающая среда — постоянный фактор, определяющий развитие организма в течение всей жизни.
В 1942 году Уоддингтон создал свой самый знаменитый рисунок, наглядно резюмирующий его тезисы, — «эпигенетический ландшафт». Если верить этому рисунку, на протяжении жизни мы словно шары катимся по наклонной местности со многими долинами. Рельеф — изображение нашего генома, долины — множество теоретически возможных эпигеномов. Они, как писал Уоддингтон, «направляют наше развитие в определенное русло».
Мы начинаем свой путь на самом верху и скатываемся сначала по небольшим впадинам, а потом — по глубоким долинам. В отличие от природного ландшафта, здесь с потерей высоты не происходит слияния нескольких малых долин в одну большую, но мы периодически оказываемся на развилках, от которых можно катиться направо или налево.
Поскольку нас постоянно довольно-таки сильно раскачивает, катимся мы, как в слаломе, с одного склона долины на другой. Иногда сила инерции переносит нас через какую-нибудь возвышенность, так что мы оказываемся в соседней долине. Тогда мы неожиданно переходим в другое состояние: наш эпигенетический код меняется.
Например, нам легче других удается сохранить стройность или же в старости мы больше иных рискуем здоровьем сердечно-сосудистой системы и так далее. Современные генетики говорят об изменении облика, или фенотипа, Уоддингтон говорил об эпигенотипе, который формируется в равной мере заданными генами и внешними факторами.
Чем старше мы становимся, тем больше углубляются основные долины и тем сложнее нам переходить из одного состояния в другое. Между тем в основных долинах обнаруживаются новые, менее глубокие промежуточные впадины. Это многочисленные эпигенетические нюансы, благодаря которым разные организмы одного вида по мере старения все больше отличаются друг от друга.
Особенно хорошо рисунок Уоддингтона отражает процессы, происходящие на уровне отдельных клеток (собственно, для этого он и задумывался). Первые дочерние клетки оплодотворенной яйцеклетки стартуют на самой вершине. Они еще могут оказаться в любой из бесчисленных долин, то есть стать клеткой любого типа. Чем ниже дочерние клетки скатываются по склону — то есть чем дальше продвигается их развитие, — тем уже их выбор и тем меньше у них принципиально различных возможностей для приобретения тех или иных характеристик, или фенотипов.
Внешние факторы обеспечивают извилистость пути клеток-шариков. Они как бы подталкивают их с боков, стараясь сбить с курса. Если толчки достаточно сильные, клетка действительно может перескочить в другую долину, то есть ее эпигеном изменится. От высоты горных хребтов, разделяющих долины, зависит, насколько легко в конкретный момент жизни внешние факторы сумеют запустить ощутимые изменения клетки. Высота показывает, насколько жестко эпигенетические переключатели управляют судьбой клетки.
Эпигентический ландшафт. Конрад Уоддингтон создал этот рисунок, чтобы наглядно показать влияние генов и окружающей среды на развитие живого существа. Эпигенетические программы изображены в виде долин, по которым, словно шар, скатывается стареющий организм. Внешние воздействия отклоняют шар от намеченной траектории, а если они достаточно сильны или приходятся на развилку, могут привести к перемещению в другую долину. Тогда организм меняется.
- Предыдущая
- 12/52
- Следующая