Выбери любимый жанр

Чудесная жизнь клеток: как мы живем и почему мы умираем - Уолперт Льюис - Страница 10


Перейти на страницу:
Изменить размер шрифта:

10

Далее мы подробно исследуем то, как функционируют клетки, и особенно внимательно рассмотрим роль белков, которые во многом определяют действие разнообразных клеточных механизмов.

3. Как мы функционируем

Как белки определяют работу клеток

Подобно заводам, оснащенным многими сборочными линиями, клетки исполняют множество функций: растут и делятся, двигаются и поддерживают свою структуру. Клеточная деятельность — это и мускульные сокращения, и передача нервных импульсов. Все это делается при помощи белков.

Многие наши клетки организованы в ткани — такие, как ткани кожи, легких и кишечника, — и выполняют различные функции в соответствии со своим предназначением. Возьмите, например, кожу, которая защищает нас от укусов насекомых и проникновения грязи, не позволяет жидкостям проникать в организм и выходить из него наружу. Внешний слой нашего кожного покрова представляет собой мертвые клетки, которые все время отшелушиваются и отпадают. В основном они состоят из белка кератина, который предопределяет их прочность. Этот же белок отвечает за то, чтобы связь клеток друг с другом была эластичной и одновременно прочной.

Потеря клеток кожи, которые располагаются на самой поверхности, восполняется за счет образования новых, которые образуются из стволовых клеток, находящихся в подкожном слое. Другой тип клеток образует нашу разветвленную кровеносную систему, в которую входят кровеносные сосуды, артерии, вены и капилляры общей протяженностью почти в сто тысяч километров. Одних капилляров — мельчайших сосудов, соединяющих артерии и вены, — в нашем организме 40 миллиардов.

Клеточные оболочки позволяют клеткам обмениваться газами, питательными веществами и выводить продукты распада. Каждая клетка находится на расстоянии не более чем в несколько клеток от обслуживающего ее капилляра.

При этом все наши клетки состоят из одних и тех же молекул и используют одни и те же механизмы для производства белков. Их химический состав также одинаков — все они примерно на 70 процентов состоят из воды. 95 процентов клеточной массы образовано всего лишь четырьмя видами атомов — углерода, водорода, азота и кислорода, которые соединяются друг с другом в самых различных комбинациях для того, чтобы создать множество видов молекул, содержащихся в клетках. Сложная структура клетки как раз и обусловлена тем, что все эти простейшие атомы соединяются друг с другом в разнообразнейших комбинациях, образуя белки и аминокислоты. Представляется, что главным качеством клеток является их способность генерировать великое множество различных химических соединений на основе одних и тех же базовых элементов — и эта способность зависит от белков.

Внутри каждой клетки имеется набор молекул, которые выполняют эти функции. Основная роль здесь у наиболее сложных белковых молекул. В нашем теле содержится до 200 различных разновидностей клеток — кожи, печени, жировых, нервных клеток и так далее, и функции всех их устанавливаются определенными белками. Различия в назначении клеток предопределяются различиями в составе белков.

Число аминокислот в белковой молекуле обычно варьируется от 50 до 2000. При этом существуют белки, состоящие всего из 30 аминокислот, и белки, состоящие из 10 000 аминокислот. Последовательность и состав аминокислот в каждом белке уникальна, и именно это определяет особенности поведения данного белка. Функционирование белков во многом зависит от их взаимодействия с другими белками или молекулами, причем это взаимодействие характеризуется весьма высокой степенью избирательности: определенный белок может связываться лишь с одной из тысяч разных молекул, находящихся в клетке. Эта особенность связана с характерным трехмерным строением каждого белка, соответствующим лишь определенному типу молекул. Благодаря такому строению, например, на поверхности белка может появляться полость, куда и проникает молекула, с которой он должен взаимодействовать.

Белки определяют структуру клетки — и в то же время представляют собой строительный материал, из которого образуется клетка. Белки являются основным компонентом клеточной оболочки, благодаря им клетки обладают способностью к перемещению. Белки также могут проникать сквозь клеточную оболочку и таким образом переносить молекулы из клетки и внутрь нее, они передают информацию, которой обмениваются клетки, действуют в качестве рецепторов и осуществляют контроль за работой генов. Белки могут объединять свои усилия, они соединяются вместе, образуя волокна, микротрубочки, кольца, слои ткани и т. д.

Основная функция некоторых белков — выступать в роли энзимов. Энзимы — это белки, которые связываются с молекулами и изменяют их структуру, расщепляя одни молекулы на более мелкие, а другие, наоборот, объединяя. Таким образом, они играют определяющую роль в формировании новых молекул и в расщеплении пищи на более мелкие молекулярные единицы; через это они влияют на поведение клеток. Практически все происходящие в клетке процессы контролируются и осуществляются различными типами белков.

Молекулярная цепочка аминокислоты чрезвычайно гибка, она обладает способностью свертываться и складываться любым образом. Глядя на нее, любой акробат может лишь позавидовать. Трехмерная структура, которую она образует, предопределяет функцию белка. То, какую форму принимает в конечном счете белок, зависит от последовательности входящих в него аминокислот. Представьте себе веревку, которая на всем своем протяжении завязана в узлы и петли и унизана крючками. Если складывать такую веревку хаотичным образом, то некоторые крючки зацепятся за петли и форма веревки изменится. То же самое происходит и с белками. Весьма часто белковые цепи соединяются неправильно, и тогда клетка уничтожает их. Правда, на это расходуются значительные запасы клеточной энергии. Для того же, чтобы белковые цепи связывались воедино правильно, в клетке существуют особые белки-поводыри.

Если меняется всего лишь одна аминокислота в длинной белковой цепочке, то меняется и вся структура белка. А это может вызвать серьезные изменения в его деятельности и привести к ненормальному функционированию всей клетки. Именно это обстоятельство лежит в основе многих заболеваний. Ярким примером является серповидная анемия, при которой меняется всего лишь одна аминокислота в белке гемоглобина. Эта мутация приводит к нарушению структуры белка, из-за чего меняется форма кровяной клетки — она приобретает серповидные очертания, что, в свою очередь, мешает нормальному прохождению кровяных клеток через кровеносные капилляры.

Каким же образом определяется порядковое место той или иной аминокислоты в белковой цепи? Фреду Сангеру, биохимику из Кембриджа, была присуждена Нобелевская премия за то, что он определил последовательность аминокислот в белке инсулина. Сангер разработал метод отделения от белковой цепи аминокислоты, находящейся на самом ее конце. Благодаря этому методу он получил возможность отделить одну за другой все аминокислоты, входящие в белок инсулина, и определил точную последовательность их расположения в белковой цепочке.

Однако даже точное знание расположения аминокислот не всегда помогает понять пространственную структуру белка. Самым удобным методом для выяснения этого является превращение белка в кристалл, который затем просвечивается рентгеновскими лучами. Изучение углов отражения лучей и позволяет распознать пространственную структуру белка. На практике же наиболее быстрым методом для определения пространственной структуры белка является его сравнение с другим белком, пространственная структура которого уже известна. Поэтому чем больше белков изучено, тем проще становится процедура выяснения пространственной структуры новых белков.

Некоторые белки необходимо точно доставить в определенные области клетки. Столь же важно не пускать кое-какие белки в места, где их присутствие нежелательно. Но каким же образом белки направляются на путь, по которому им следует устремиться для выполнения своих специфических функций? Ведь в большинстве наших клеток имеются миллионы белковых молекул, представляющие несколько тысяч разных видов белков. Как устанавливается порядок в этом хаосе? Но все, оказывается, просто: выбор места, в котором белки должны находиться, закодирован в самой их структуре. Свободно плавающие внутри клетки белки каждую секунду встречаются с тысячами других молекул, в том числе и белковых. В результате такого взаимодействия они получают нужную информацию и попадают туда, где и должны находиться.

10
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело