Выбери любимый жанр

Гиперпространство - Сапцина Ульяна Валерьевна - Страница 15


Перейти на страницу:
Изменить размер шрифта:

15

Жизнь в пространственной складке

Чары наконец рассеялись.

За свою короткую жизнь Риман успел снять заклятие, наложенное Евклидом за две тысячи лет до того. Метрический тензор Римана стал оружием, с помощью которого молодые математики могли бросить вызов «беотийцам», улюлюкающим при любом упоминании о многомерности. Тем, кто последовал по стопам Римана, стало легче высказываться о незримых мирах.

Вскоре начались исследования по всей Европе. Видные ученые взялись за популяризацию идеи для широкой публики. Герман фон Гельмгольц, вероятно, самый знаменитый немецкий физик того поколения, пораженный трудами Римана, много и подробно писал, обращаясь к широкой аудитории и рассказывая о математике разумных существ, живущих на шаре или сфере.

Согласно Гельмгольцу, эти существа, наделенные мышлением под стать нашему, независимо от нас обнаруживают, что все евклидовы постулаты и теоремы бесполезны. К примеру, на сфере сумма углов треугольника не составляет 180°. «Книжные черви», о которых первым заговорил Гаусс, теперь населяли двумерные сферы Гельмгольца. Гельмгольц писал, что «аксиомы геометрии должны меняться в зависимости от характера пространства, населенного существами, мыслительные способности которых соответствуют нашим»[17]. Но в своих «Популярных лекциях о научных предметах» (1881 г.) Гельмгольц предупреждает читателей, что визуализировать четвертое измерение мы не можем. Он пишет, что «подобное представление так же невозможно, как невозможно рожденному слепым представить себе, что такое разные цвета»[18].

Некоторые ученые, восхищенные элегантностью решения Римана, пытались найти физическое применение столь мощному инструменту[19]. Одни исследовали его применительно к высшим измерениям, другие обращались к более практичным и приземленным вопросам: например, как едят двумерные существа. Чтобы двумерные люди Гаусса могли питаться, их рты должны быть обращены вбок. Но если мы нарисуем их пищеварительный тракт, то заметим, что он полностью рассекает их тело (рис. 2.5). Таким образом, в процессе еды их тела разделяются на две части. В сущности, любая трубка, соединяющая два отверстия в их теле, будет делить их на две части, никак не скрепленные друг с другом. В результате мы встаем перед трудным выбором: либо эти люди едят так, как мы, и распадаются надвое, либо подчиняются другим законам биологии.

Гиперпространство - i_007.png

Рис. 2.5. Двумерное существо не может питаться. Пищеварительный тракт неизбежно делит его на две обособленные части, в итоге существо распадается.

К сожалению, передовая риманова математика опережала сравнительно отсталую физику XIX в. Физической основы, которая направляла бы дальнейшие исследования, еще не существовало. Лишь в следующем веке физики догнали математиков. Но это не помешало ученым XIX в. строить бесконечные догадки о том, как выглядят существа из четвертого измерения. Вскоре они осознали, что жители четвертого измерения должны обладать почти божественными способностями.

Быть богом

Представьте, что вы наделены способностью проходить сквозь стены.

Вам больше незачем затрудняться, открывая двери: можно пройти прямо сквозь них. Незачем обходить вокруг зданий: можно войти в них прямо сквозь стены и опоры, пройти насквозь и выйти через заднюю стену. Незачем и объезжать горы, если можно двинуться через них напрямик. Проголодавшись, можно просто протянуть руку сквозь дверцу холодильника, не открывая его. Даже если вы забудете ключи в машине и захлопнете дверцу, то все равно сможете пройти сквозь нее и сесть за руль.

Представьте, что в ваших силах исчезать и появляться по своему желанию. Вместо того, чтобы проделывать весь путь до школы или до работы, можно просто исчезнуть дома и вновь материализоваться уже в классе или в офисе. Не нужен самолет, чтобы побывать в отдаленных уголках, — можно просто исчезнуть и вновь материализоваться, где захочется. В час пик незачем торчать в пробке — можно раствориться в воздухе вместе с машиной и снова материализоваться в пункте назначения.

Представьте, что у вас рентгеновский взгляд. Вы издалека способны видеть места катастроф. Исчезнув и вновь материализовавшись на месте любой такой катастрофы, вы увидите, где именно находятся пострадавшие, даже если они погребены под обломками.

Представьте, что вы способны проникнуть внутрь какого-либо предмета, не открывая его. Например, извлечь дольки из апельсина, не очищая его и не разрезая его. Вас будут восхвалять как виртуозного хирурга, которому не надо даже разрезать кожу, чтобы провести операцию на внутренних органах, в итоге значительно снижается не только боль, но и риск инфекции. Вам достаточно просто проникнуть внутрь организма пациента, пройти непосредственно сквозь кожу и выполнить сложную операцию.

Представьте, как распорядился бы всеми этими возможностями преступник. Он мог бы проникнуть даже в самый неприступный банк. Мог бы увидеть ценности и деньги за массивными дверями сейфа, попасть внутрь и забрать все, что захочет. А потом преспокойно уйти, несмотря на простреливающие его насквозь пули охранников. Преступника с такими способностями не удержала бы ни одна тюрьма.

Скрывать от нас что-либо было бы бесполезно. Никто не сумел бы утаить от нас никакие сокровища. Нас не остановили бы никакие препятствия. Мы творили бы чудеса, демонстрировали мастерство, недоступное пониманию простых смертных. Мы сделались бы всемогущими.

Какое существо может обладать такой божественной силой? Ответ: существо из многомерного мира. Разумеется, все его подвиги недоступны тому, кто живет в мире трех измерений. Для нас стены непроницаемы, а тюремные решетки нерушимы. Попытка пройти сквозь стену завершится острой болью и разбитым в кровь носом. Но для обитателя четырехмерного мира все перечисленное — игра.

Для того чтобы понять, как можно совершить все эти удивительные трюки, вернемся к вымышленным двумерным существам Гаусса, поселив их на двумерной столешнице. Для того чтобы посадить преступника в тюрьму, флатландцам достаточно очертить вокруг него круг. Куда бы ни кинулся преступник, везде он будет натыкаться на непреодолимое препятствие. Но нам проще простого вызволить этого узника из его темницы. Мы можем протянуть руку, схватить флатландца, отделить его от двумерного мира и перенести на другое место (рис. 2.6). Этот подвиг, совершенно заурядный в трех измерениях, выглядит фантастикой в двумерном мире.

Гиперпространство - i_008.png

Рис. 2.6. Во Флатландии «тюрьма» — круг, описанный вокруг заключенного. В двух измерениях бегство из этого круга невозможно. Но трехмерный человек может перенести флатландца из тюрьмы в третье измерение. Тюремщику наверняка покажется, что заключенный таинственным образом растворился в воздухе.

Тюремщик увидит, что заключенный вдруг исчез из надежной, неприступной тюрьмы, растворившись в воздухе. А потом так же внезапно этот заключенный возникнет в другом месте. Если объяснить тюремщику, что заключенный был «поднят вверх», за пределы Флатландии, он не поймет, о чем речь. В словаре флатландцев нет понятия «вверх», представить себе, что это такое, они не в силах.

Схожим образом можно объяснить и другие действия и явления. К примеру, обратим внимание, что внутренние органы флатландца (например, желудок или сердце) для нас полностью видимы — точно так же, как мы видим внутреннюю структуру клеток на предметном стекле под микроскопом. Поэтому несложно проникнуть внутрь флатландца и провести хирургическую операцию, не делая разрезов на коже. Кроме того, мы можем отделить флатландца от его плоского мира, повернуть другой стороной к себе и снова положить на плоскость. Отметим, что теперь его левые и правые органы поменялись местами, т. е. сердце находится справа (рис. 2.7).

вернуться

17

Процитировано в: Белл «Математики», с. 14.

вернуться

18

Процитировано в: Белл «Математики».

вернуться

19

В 1917 г. друг Эйнштейна физик Пауль Эренфест, опубликовал статью под заголовком «Каким образом в фундаментальных законах физики проявляется трехмерность пространства?». Эренфест задался вопросом, возможны ли звезды и планеты в высших измерениях. Например, свет свечи тускнеет по мере нашего удаления от нее. Так и гравитационное притяжение звезды по мере удаления от нее слабеет. Согласно Ньютону сила гравитации уменьшается по закону обратных квадратов. Если наше расстояние от свечи или звезды увеличивается в два раза, свет или гравитационное притяжение становится в четыре раза слабее. Если расстояние увеличивается втрое, они слабее в девять раз.

Если пространство четырехмерное, тогда свет свечи и гравитация должны ослабевать гораздо быстрее по обратному кубическому закону. Удвоение расстояния от свечи или звезды ослабит свет или гравитацию в восемь раз.

Может ли Солнечная система существовать в таком четырехмерном мире? В принципе, может, но орбиты планет вряд ли будут стабильными. Малейшей вибрации хватит, чтобы изменить их. Со временем все планеты отклонятся от своих орбит и врежутся в Солнце.

Но и Солнце не сможет существовать в мире высших измерений. Сила гравитации стремится сжать Солнце, ее уравновешивает сила термоядерных реакций, которая стремится разорвать его. Таким образом, Солнце — результат точного равновесия сил ядерного взаимодействия, способных взорвать его, и сил гравитационного взаимодействия, способных сжать его в точку. В многомерной Вселенной это шаткое равновесие неизбежно нарушится, что приведет к спонтанному схлопыванию звезд.

15
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело