Выбери любимый жанр

Жар холодных числ и пафос бесстрастной логики - Бирюков Борис Владимирович - Страница 41


Перейти на страницу:
Изменить размер шрифта:

41

Но вернемся к математику, получившему заказ на выполнение умственной работы с помощью «усилителя интеллекта» — мощной вычислительной техники. Помимо того случая, когда длительность и объем соответствующих вычислений выходят за рамки возможностей данной ЭВМ, математик ответит заказчику отказом еще в одном случае если тот, кто предложил ему задачу, не сможет толково объяснить, какой детерминированный процесс нужно осуществить. Есть пословица «хорошо поставить проблему — значит наполовину решить ее»; для математика, в распоряжении которого имеется ЭВМ, это особенно справедливо.

Коль скоро хороший математик-программист поймет постановку задачи, он сумеет рано или поздно (то есть опять-таки «в принципе», в предположении неограниченного времени, пространства и материалов) перевести ее на язык вычислительной машины. Но если объяснения заказчика будут не ясными, если в цепи мыслей у него будут разрывы, заполненные лишь смутными, недодуманными до конца идеями или выражением собственного отношения к предмету, то самый выдающийся программист окажется бессильным. Процесс, который его просят осуществить, в таком случае не будет ЭВМ-вычислимым. Но будет ли он вычислимым в каком-либо другом, пусть даже очень широком смысле?

Можно попытаться представить себе дальнейшее развитие событий при встрече этих двух людей. Математик после нескольких безуспешных выслушиваний заказчика начнет все откровеннее говорить последнему, что у него не все в порядке с ясностью понятий, строгостью и логикой. Тогда может произойти следующее: заказчик, не будучи в состоянии ясно изложить проблему, а математик — помочь ему в постановке задачи, не смогут договориться друг с другом, и заказчик покинет вычислительный центр с убеждением, что кибернетика — это красивый мыльный пузырь, который лопается при соприкосновении с реальностью, математик же подумает: правы те, кто считает математику единственной точной наукой, представители же нематематических наук говорят то, что сами до конца не понимают. Наверно, больше всего достанется при этом ученым-гуманитариям...

Но диалог математика и нематематика может иметь и иной исход. Нематематик может понять, что в его объяснениях действительно имеются неясности, которые можно устранить. А математик может взяться за освоение фактического материала предложенной задачи, с тем чтобы уточнить ее постановку. При этом он произведет — с одобрения нематематика — разумные упрощения задачи, делающие ее доступной для имеющейся в его распоряжении ЭВМ. Либо же математик выяснит, что, хотя задача (в определенных упрощениях) поддается точной формулировке, современных средств вычислительной техники недостаточно для ее решения. Тогда нематематику придется подождать, когда вычислительные мощности возрастут настолько, что задача окажется доступной для машинного решения.

Могут возникнуть, однако, и существенно менее утешительные ситуации. Одна из них может состоять в том, что у математика сложится убеждение (подкрепленное вескими соображениями): задача столь сложна, что ее решение окажется недоступным для любых вычислительных систем, которые могут появиться на любом мыслимом этапе грядущего развития цивилизации.

Что задачи, недоступные для решения по программе определенного типа, которую мы можем составить в настоящее время, для любых машин, мыслимых сконструированными в будущем, существуют, убедиться нетрудно. Таковой, например, является задача автоматизации игры в шахматы, основанная на описанной выше идее полного перебора вариантов. По оценке Шеннона число вариантов в этой игре достигает порядка 10120. Если допустить, что на оценку каждого варианта машина тратит одну миллиардную секунды (допущение, колоссально далекое от возможностей даже проектируемых машин четвертого поколения, быстродействие которых, по имеющимся данным, достигнет нескольких миллиардов элементарных операций в секунду) то расчет вариантов, необходимый для автоматизации шахматной игры, займет время, большее, чем время предполагаемого существования нашей галактики!

Конечно, программа, основанная на простом переборе очень неэкономна. Можно строить — и уже построены - иные программы игры в шахматы; лучшие из них основаны на принципах, извлекаемых из изучения того, как принимают решение в игре люди — мастера шахматной игры. Интересные принципы построения программы машинной игры в шахматы разработаны экс-чемпионом мира М. М. Ботвинником[7].

Программы, основанные на изучении и использовании принципов мышления человека, решающего аналогичные задачи, называются эвристическими[8]. Во многих из них автоматизация решения задач получается за счет того, что не каждая задача (из класса задач того типа, на решение которых рассчитана данная программа) может быть фактически решена машиной. Это может происходить, в частности, от того, что не все свойства объектов, которые фигурируют в задаче, учтены в ее программе (некоторые из них могут быть попросту неизвестны). В случае шахмат у специалистов — как математиков, так и шахматных мастеров и гроссмейстеров, занимающихся шахматными программами, имеется чувство уверенности, что шахматная программа, играющая в силу шахматного мастера, будет со временем написана.

Может ли это иметь место в применении к любым задачам? Этот вопрос в настоящее время следует признать открытым. Однако многие выдающиеся математики склоняются в пользу отрицательного ответа. О мнении одного из них — Дж. фон Неймана — стоит сказать специально.

Джон фон Нейман (1903—1957) принадлежал к числу великих математиков и естествоиспытателей XX столетия. Получив разностороннее — математическое и естественнонаучное — образование (он имел диплом инженера-химика) в Европе (сам он родился в Будапеште), он связал свою научную судьбу с американской наукой. Начав свой путь в науке с логики (фон Нейман явился создателем одной из первых аксиоматических теорий множеств), он стоял у колыбели современной вычислительной техники[9]. Он глубоко разработал теоретические основы квантовой механики. Вместе с Н. Винером и К. Шенноном фон Нейман явился создателем кибернетики, к которой пришел от математической теории автоматов, основы которой сам и заложил. Еще ранее он почти единолично создал такую дисциплину, как теория игр, столь важную ныне в теоретической кибернетике. Примечательно, что он не был только «чистым» математиком, а, обладая глубоким естественнонаучным образованием, плодотворно занимался приложениями математического аппарата[10].

В конце своей жизни фон Нейман глубоко раздумывал над возможностями ЭВМ и автоматов в решении сложных задач, над «природой» вычислительной машины и человеческого мышления. Рассматривая задачу о машинном моделировании нейронных структур мозга, он пришел к гипотезе, что если система достигает определенной ступени сложности, ее описание — и, значит, моделирование на любой машине — не может быть проще, чем она сама. Приведем соответствующие идеи фон Неймана в его собственном изложении, так как они представляют огромный интерес; высказанные более четверти века тому назад, они полностью сохраняют свою силу и по сие время.

«Нет сомнения в том, что любую отдельную фазу любой мыслимой формы поведения можно «полностью и однозначно» описать с помощью слов. Это описание может быть длинным, однако оно всегда возможно. Отрицать это означает примкнуть к разновидности логического мистицизма, от чего большинство из нас, несомненно, далеки. Имеется, однако, существенное ограничение, состоящее в том, что все сказанное применимо только к каждому элементу поведения, рассматриваемому в отдельности, но далеко не ясно, как все это применять ко всему комплексу поведения в целом».

Далее фон Нейман поясняет эту мысль на примере зрительного восприятия и делает кардинальной важности вывод. По его мнению, «очень возможно, что простейший и единственно доступный на практике способ показать, что представляет собой явление зрительного сходства, состоит в описании связей, существующих в зрительном аппарате мозга. Здесь нам придется иметь дело с такими разделами логики, в которых у нас практически нет предшествующего опыта. Степень сложности, с которой мы сталкиваемся в этом случае, далеко выходит за рамки всего того, что нам известно. Мы не имеем права считать, что логические обозначения и методы, применявшиеся ранее, могут быть использованы и в этой области. У нас нет полной уверенности в том, что в этой области реальный объект не может являться простейшим описанием самого себя, то есть, что всякая попытка описать его с помощью обычного словесного или формально-логического метода не приведет к чему-то более сложному, запутанному и трудновыполнимому... Весьма возможно, что уже сама схема связей в зрительном аппарате мозга является простейшим логическим выражением (или определением) принципа зрительной аналогии».

41
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело