Выбери любимый жанр

Жар холодных числ и пафос бесстрастной логики - Бирюков Борис Владимирович - Страница 50


Перейти на страницу:
Изменить размер шрифта:

50

107

18. Обращаем внимание на различие между доказательством теорем в формальной системе и доказательством теорем о самой формальной системе. Доказательства последнего рода называются метадоказательствами, а теоремы, в них доказываемые, метатеоремами. Что доказательства в формальной системе финитны — это очевидно, так как они представляют собой знаковые конструкции, то есть материальные объекты. Задача Гильберта состояла в том, чтобы придать финитный характер метадоказательствам.

108

19. Оно, правда, представляет собой сведение к абсурду, но в такой его форме, которая приемлема даже для Брауэра: ни закон исключенного третьего, ни закон снятия двойного отрицания (также отвергаемый интуиционистами) здесь не используется.

109

20. Этот доклад составляет добавление IX в книге «Основания геометрии».

110

21. П. С. Новиков. Элементы математической логики. М.» 1959, с. 36.

111

1. О содержании этой работы Гёделя можно подробнее прочесть в кн.: Э. М. Чудинов. Теория относительности и философия. М.. 1974, с. 232 и далее.

112

2. K. Godel. Uber formal unentscheidbare Satze der Principia Mathematica und vervandter Systeme. -— «Monatchefter fur Mathematik und Physik» Bd 38, 1931.

113

3. Понятие тождественной истинности, которое в гл. 3 было нами разъяснено в применении к формам высказываний, трактуемым на уровне логики высказываний (алгебры логики), естественным образом распространяется на классическую логику предикатов и строящиеся на ее основе логико-математические системы. Поскольку, однако, мы не можем здесь рассказать, как происходит такое распространение, мы будем вместо «тождественной истинности» употреблять более общее (хотя и менее определенное) понятие «содержательной истинности» (истинности по смыслу).

114

4. Заметим, что если из доказуемости (или истинности) некоторой формулы (высказывания) следует ее недоказуемость, то это не означает еще формально-логического противоречия. Таковое будет иметь место, если, кроме этого, из недоказуемости будет следовать доказуемость.

115

5. Отметим, что в своей теореме Гёдель использовал более сильное условие, чем «обычная» непротиворечивость, смысл которой был кратко пояснен в главе 5, с. 120—121. Однако впоследствии было показано, что для его теоремы достаточно и «обычной» непротиворечивости.

116

6. П. С. Новиков. Элементы математической логики. М., 1989, с. 36.

117

7. А. Н. Нагель. Дж. Р. Ньюмен. Теорема Гёделя. М., 1970. с. 58—60.

118

8. Краткий, но достаточно ясный обзор проблематики исследований формальных систем читатель найдет в гл. I кн.: С. Клини. Математическая логика. М., 1973.

9. Одно из таких доказательств приводится в кн.: Э. Мендельсон. Введение в математическую логику. М., 1971, с. 282—295.

119

1. Совокупность этих допущений составляет то, что обычно называют абстракцией потенциальной осуществимости. Представление об этой абстракции в явной форме было введено в логику и основания математики выдающимся советским ученым Андреем Андреевичем Марковым (род. в 1903 г.). См.: А. А. Марков. Теория алгорифмов. Труды Математического института АН СССР. т. ХШ. М.—Л.. 1954. с. 15; А. А. Марков. О логике конструктивной математики. М., 1972.

120

2. Более строго операцию подстановки можно задать следующим образом. По n-местным функциям q1..., gm и m-местной функции h строится n-местная функция f такая, что для любых x1, x2,..., Хn

f(x1, x2,..., Хn) = h(x1, ... Хn),... gm(x1,... Хn)).

121

3. Обращаем внимание на то, что в определениях операторов I—III знак равенства (=) следует понимать как знак так называемого условного равенства (≃). Соединение двух выражений, в которых могут фигурировать знаки частичных функций, знаком условного равенства,-понимается как следующее утверждение: для любого из двух выражений из того, что определено одно из них, вытекает, что определено и другое и их значения совпадают.

122

4. Отметим в этой связи, что приведенное там же определение функции δ подпадает под схему II для случая, когда отсутствуют параметры рекурсии (см. с. 137 — 138). Роль f играет функция δ, в качестве r берется 0, а в качестве h — проектирующая функция I12.

122

5. См. А. И. Мальцев. Алгоритмы и рекурсивные функции. М., 1965, с. 12 и далее.

123

6. Имеется в виду статья: L. Kalmar. An Argument against the Plausibiolitu of Church's Thesis. «Constructivity in Mathematics. Proceedings of the Colloquium held at Amsterdam». Amsteerdam, 1959, p. 72—73.

124

7. Имеется в виду работа : А. Church. An Unsolvable Problem of Elementary Number Theory. «American Journal of Mathematics», vol. LVIII, № 2, 1936.

125

8. Характеристической (представляющей) функцией арифметического предиката P (х1, ..., Хn)называется такая арифметическая функция f, что для любого набора аргументов x1, ..., Хn

f(х1, ..., Хn) = (1, если предикат P выполняется на данном наборе) или (0, если P не выполняется на данном наборе.)

Предикат называется примитивно-, обще- или частично-рекурсивным в соответствии с типом характеристической функции.

126

9. В основополагающей статье А. Тьюринга (А. М. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. «Proceedings of the London Mathematical Society», Ser. 2, vol. 42, 1936) была не только изложена его «машина», но и дана попытка проанализировать вычислительный процесс вообще. Обширный фрагмент из этой статьи Тьюринга можно в русском переводе найти в кн.: М. Минскии. Вычисления и автоматы. М., 1971, с. 138—142. Там же читатель найдет подробное описание Тьюринговых машин. Обращаем внимание на то, что наше изложение машины Тьюринга в соответствии с традицией, принятой в современных работах, в ряде непринципиальных пунктов отличается от тьюрингова.

127

10. Отметим, что приведенные нами машины Тьюринга, работающие над целыми положительными числами, служат лишь иллюстрацией тьюринговой формализации вычислительного процесса

128

11. Об упомянутых—и других—видах автоматов можно прочесть в интересной книге М. Г. Гаазе-Рапопорта «Автоматы и живые организмы» (М., 1961)

129

12. А. А. Марков. Теория алгорифмов, с. 3 (см. примечание 1)

130

13. С. Я. Яновская. О некоторых чертах развития математической логики и отношении ее к техническим приложениям.— В кн.: Применение логики в науке и технике. М., 1960, с. 10.

131

50
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело