Выбери любимый жанр

Книга шифров. Тайная история шифров и их расшифровки - Сингх Саймон - Страница 44


Перейти на страницу:
Изменить размер шрифта:

44

Книга шифров. Тайная история шифров и их расшифровки - _81.jpg

Рис. 47 Алан Тьюринг.

В 1931 году Тьюринг поступил в Королевский колледж Кембриджа. Он приехал, когда шли жаркие дискуссии о природе математики и логики, и его окружали некоторые из великих людей того времени: Бертран Рассел, Альфред Норт Уайтхед и Людвиг Витгенштейн. В центре споров была статья логика Курта Геделя о неразрешимости. Всегда считалось, что, по крайней мере в теории, на все математические вопросы можно найти ответ. Однако Гедель показал, что могут существовать задачи, которые нельзя решить логическим путем, так называемые неразрешимые задачи. Математики были потрясены новостью, что, оказывается, математика не так уж всесильна, как они всегда считали. Они попытались спасти свою науку, постаравшись отыскать способ выявления неудобных неразрешимых задач с тем, чтобы суметь надежно избавиться от них. Именно эта цель в конце концов вдохновила Тьюринга написать свою самую важную математическую статью «О вычислимых числах», опубликованную в 1937 году. В пьесе «Взлом шифра» Хью Уайтмора о жизни Тьюринга кто-то спросил Алана о значении его статьи. Тот ответил: «Она об истинном и ложном. В общем смысле. Это специальная статья о математической логике, но она также и о сложности отделения истины от ошибочного высказывания. Люди, причем большинство, считают, что в математике мы всегда знаем, что истинно, а что ложно. Это отнюдь не так. Больше не так».

В своей статье Тьюринг постарался идентифицировать неразрешимые задачи и дал описание воображаемой машины, которая предназначается для осуществления конкретной математической операции, или алгоритма. Другими словами, машина может выполнять определенную, заранее установленную последовательность шагов, в процессе которых будет происходить, к примеру, умножение двух чисел. Тьюринг полагал, что перемножаемые числа могли бы поступать в машину на бумажной ленте, наподобие ленты с дырочками, служащей для игры пианолы. Результат умножения будет выводиться на другой ленте. Его воображению рисовался целый ряд таких так называемых машин Тьюринга, каждая из которых специально предназначена для выполнения определенной задачи, например, деления, возведения в квадрат или разложения на множители. Затем Тьюринг предпринял еще более радикальный шаг.

Он представил себе машину, работу которой можно менять, благодаря чему она сможет выполнять все действия всех возможных машин Тьюринга. Изменения будут производиться путем ввода тщательно подготовленных лент, которые превращают универсальную машину в машину для деления, машину для умножения или в машину любого другого типа. Тьюринг назвал такое гипотетическое устройство универсальной машиной Тьюринга, так как она была способна дать ответ на любой вопрос, на который можно было бы дать логический ответ. К сожалению, как оказалось, не всегда можно логически ответить на вопрос о разрешимости или неразрешимости другой задачи, и поэтому даже универсальная машина Тьюринга не могла определить каждую неразрешимую задачу.

Математики, прочитав статью Тьюринга и узнав, что укротить монстра Геделя так и не удалось, были разочарованы, однако в качестве утешительного приза они получили от Тьюринга концепцию современного программируемого компьютера. Тьюринг знал о работе Бэббиджа, так что универсальная машина Тьюринга могла бы рассматриваться как реинкарнация разностной машины № 2[18]. На самом же деле Тьюринг пошел гораздо дальше, — он заложил прочные теоретические основы программирования, благодаря чему у вычислительных машин появились немыслимые доселе возможности. Но это были 30-е годы, и технологии, способной помочь воплотить универсальную машину Тьюринга в реальность, пока еще не существовало. Однако Тьюринга вовсе не беспокоило, что его теории намного опередили технические возможности его времени. Он просто хотел получить признание со стороны математического сообщества, которое восприняло его статью как поистине одно из наиболее крупнейших достижений столетия. На тот момент ему исполнилось всего лишь двадцать шесть.

То был самый счастливый и успешный период жизни Тьюринга. К этому времени его избрали членом научного общества Королевского колледжа, ставшего родным домом для цвета мировой интеллектуальной элиты. Он вел жизнь типичного кембриджского преподавателя, сочетающего занятия «чистой» математикой с повседневной деятельностью. В 1938 году он с увлечением посмотрел фильм «Белоснежка и семь гномов», где на него произвела неизгладимое впечатление сцена, когда злая колдунья макает яблоко в яд. После коллеги неоднократно слышали, как Тьюринг напевал: «В напиток яблоко макнешь и навеки ты уснешь».

Годы в Кембридже для Тьюринга остались незабываемы. Помимо успехов на научном поприще, среда, в которой он очутился, отличалась благожелательностью и терпимостью. В университете был широко распространен гомосексуализм; здесь можно было свободно вступать в связь, не тревожась о том, обнаружит ли это кто-нибудь и что об этом скажут. Хотя у Тьюринга не было ни с кем длительных серьезных отношений, он казался доволен жизнью. Но в 1939 году академическая карьера Тьюринга внезапно завершилась. Правительственная школа кодов и шифров пригласила его в качестве криптоаналитика в Блечли, и 4 сентября 1939 года, на следующий день после того, как Невилл Чемберлен объявил Германии войну, Тьюринг перебрался из роскоши Кембриджа в гостиницу Кроун Инн в Шенли Брук Энде.

Каждый день он садился на велосипед и ехал 5 километров от Шенли Брук Энда до Блечли-Парка, где проводил часть времени в казармах, выполняя обыденную дешифровальную работу, а часть — в «мозговом центре» Блечли, занимающем помещение, где раньше у сэра Герберта Леона хранились яблоки, груши и сливы. Этот «мозговой центр», — группа ведущих ученых, — собирался в тех случаях, когда криптоаналитикам предстояло разрешить вставшие перед ними новые проблемы или спрогнозировать, какие проблемы могут возникнуть в будущем. Задача Тьюринга заключалась в том, чтобы понять, как поступать, если в немецкой армии изменится система обмена разовыми ключами. Прежний успех в Блечли был достигнут благодаря работе Реевского, которая опиралась на тот факт, что операторы Энигмы зашифровывали каждый разовый ключ дважды (например, при разовом ключе YGB оператор будет его зашифровывать как YGBYGB). Считалось, что такое повторение гарантирует получателя от ошибок, но оно же создавало брешь в надежности Энигмы. Британские криптоаналитики полагали, что это не сможет продлиться долго, что немцы заметят, что повторяющийся ключ компрометирует шифр Энигмы, и тут же операторам Энигмы будет предписано отказаться от его повторения, а это приведет к тому, что применяемые в Блечли способы дешифрования с этого момента окажутся бесполезными. Задача Тьюринга как раз и заключалась в том, чтобы отыскать альтернативный путь атаки Энигмы без использования повторяющегося разового ключа.

Несколько недель спустя Тьюринг узнал, что в Блечли накоплена обширная библиотека дешифрованных сообщений. Ознакомившись с ними, он заметил, что многие из них имеют неизменную структуру, благодаря чему, как он полагал, ему иногда удавалось бы предсказать часть содержания недешифрованного сообщения, зная только, когда и откуда оно было отправлено. Так, исходя из накопленною опыта, он знал, что немцы ежедневно в 6 утра или чуть позже посылали обычную зашифрованную сводку погоды. Поэтому в зашифрованном сообщении, перехваченном в 6.05 утра, почти наверняка будет присутствовать слово wetter — немецкое слово «погода». Скрупулезное следование правилам в любой военной организации означало, что по стилю такие сообщения были жестко регламентированы, так что Тьюринг был уверен даже в том, где именно в зашифрованном сообщении стоит слово wetter. Его опыт мог подсказать ему, что буквам открытого текста wetter соответствуют первые шесть букв некоторого зашифрованного текста. Когда часть открытого текста может быть сопоставлена части шифртекста, то такое сочетание называется крибом[19].

44
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело