От водорода до …? - Таубе Петр Рейнгольдович - Страница 43
- Предыдущая
- 43/78
- Следующая
Спектроскопическое исследование подтвердило заключение о новом элементе. «Скрытый» газ обладает такими линиями в спектре, которых не давало ни одно из известных тогда веществ.
Современная техника позволяет получать криптон из воздуха в значительных количествах, и есть все основания предполагать, что криптон скоро заменит инертный аргон в электрических лампочках. Лампочки, наполненные криптоном, еще более экономичны: при том же расходе энергии они дают больше света, лучше выдерживают перегрузку и значительно долговечнее обычных, наполненных смесью азота с аргоном. Это объясняется тем, что «массивные» малоподвижные молекулы криптона замедляют передачу тепла к стеклу лампы от накаленной нити и уменьшают испарение атомов вещества с ее поверхности.
Радиоактивный изотоп криптона — криптон-85, интенсивно излучающий бета-лучи, используется для наполнения специальных ламп, в которых энергия радиоактивного излучения превращается в видимый свет. Такие лампы состоят из стеклянного баллона, внутренние стенки которого покрыты фосфоресцирующим составом. Бета-лучи криптона-85, попадая на фосфоресцирующий состав, вызывают свечение его, хорошо видное на расстоянии до 450–500 м.
На расстоянии до 3 м от лампы можно совершенно свободно читать газету. Лампы долговечны (период полураспада криптона 8,5–10 лет), работают независимо от источника тока и внешних условий.
Темно-красный недотрога
Темно-красным этот мягкий, легкоплавкий (плавится при 39 °C) металл назван не за собственный цвет. Весьма сходный по свойствам с калием, он имеет серебристый цвет с металлическим блеском. Свое название он получил по красным линиям в спектре, по которым был обнаружен в 1861 г. немецким химиком Р. Бунзеном совместно с немецким физиком Г. Кирхгофом. Соединения рубидия — постоянные спутники соединений натрия и калия. В одних случаях их относительно много до 0,1 %, в других — значительно меньше. Наиболее богаты соединениями рубидия воды некоторых минеральных источников и некоторые минералы вулканического происхождения (лепидолит, литиевая слюда). На долю рубидия приходится 0,004 % от общего числа атомов земной коры.
Отдельные виды растений избирательно извлекают из почвы соединения рубидия. К числу таких растений относятся некоторые сорта свеклы. Рубидий содержится также в виноградном соке, где его от 0,5 до 1 мг в литре.
Рубидий — металл, который можно назвать химической недотрогой. От соприкосновения с воздухом он самопроизвольно воспламеняется и сгорает ярким розовато-фиолетовым пламенем. С водой взрывает, так же бурно реагирует при соприкосновении с фтором, хлором, бромом, йодом, серой. Как настоящего недотрогу, рубидий необходимо беречь от внешних воздействий. Для этой цели его помещают в сосуды, наполненные сухим керосином. Рубидий тяжелее керосина (плотность рубидия 1,5) и не реагирует с ним.
Рубидий — радиоактивный элемент, он медленно испускает поток электронов, превращаясь в стронций.
Наиболее замечательным свойством рубидия является его своеобразная чувствительность к свету. Под влиянием лучей света рубидий становится источником электрического тока. С прекращением светового облучения исчезает и ток. Явление возникновения электрического тока под влиянием света называется фотоэффектом, а электрический ток, возникающий при фотоэффекте, — фотоэлектричеством. Фотоэлектрические свойства рубидия дают возможность использовать его при изготовлении фотоэлементов — электрических приборов, в которых световая энергия непосредственно превращается в электрическую. Фотоэлементы широко применяются в настоящее время в звуковом кино, телевидении, автоматизации сложных производств, в управлении работой на расстоянии агрегатов и машин, в частности, в атомной технике.
В виде хлористых, бромистых и йодистых солей рубидий применяется в медицине как болеутоляющее и успокаивающее средство.
Участник фейерверков
«Металлом красных огней» академик А. Е. Ферсман назвал в своей чудесной книге «Занимательная геохимия» серебристо-белый, легкий (плотность 2,6), довольно мягкий металл стронций. Красный огонь, полученный с помощью стронция, видели многие. Всякий, кто любовался фейерверком, невольно следил за стремительным полетом ракет. Вот, быстро оставляя за собой светящийся след, шипя и потрескивая, высоко в небо взлетает ракета. Достигнув «потолка», светящаяся точка останавливается на какое-то мгновение, и вдруг в ночной темноте вспыхивает яркий, светящийся красным огнем, шар, освещающий на несколько секунд небосвод. Пламя горящей ракетной смеси окрасили соли стронция в характерный красный цвет. Чаще всего в состав красных ракет входит азотнокислый стронций. В России соединения стронция еще до их выделения в свободном виде широко использовались в пиротехнических составах уже во времена Петра Первого для получения «потешных огней», устраивавшихся обычно при проведении различных торжеств и празднеств. Хотя стронция в природе больше (0,008 %), чем многих других металлов, например меди, цинка, широкого применения он еще не нашел. Подобно другим активным металлам, например кальцию, стронций очищает черный металл от вредных газов и примесей. Это свойство дает стронцию перспективу применения в металлургии.
Перспективно будущее некоторых искусственных радиоизотопов стронция в производстве атомных электрических батарей для космических ракет и искусственных спутников Земли. В основе работы атомной электрической батареи лежит излучение радиостронцием электронов большой энергии. Элементы, объединенные в батарейку размером со спичечную коробку, способны при совместном действии давать энергию в течение многих лет (15–25). Атомные батарейки на радиоактивном стронции могут также применяться в телефонах, радиоаппаратуре и т. д. Между прочим, швейцарские часовщики применили стронциевые батареи для приведения в действие часовых механизмов.
Помимо атомных котлов, где среди различных радиоактивных изотопов образуется и радиоизотоп стронция, последний обязательно находится в радиоактивной пыли, получающейся при взрыве атомной или водородной бомбы. Пыль состоит из «осколков» атомов делящихся элементов с порядковыми номерами от 30 до 62. Радиоактивная пыль, уносится после взрыва восходящими потоками воздуха в стратосферу, вместе с дождем или снегом медленно (примерно до 10 % в год) выпадает на землю. Происходит постепенное увеличение радиоактивности поверхности земли, а следовательно, и постепенное увеличение радиоактивного облучения находящихся на ней организмов.
В числе изотопов, выпадающих на поверхность земли, особого упоминания заслуживает радиоизотоп стронция с массовым числом 90 (стронций-90), излучающей электроны и имеющий период полураспада около 20 лет. Попадая в почву, стронций-90 вместе с растворимыми соединениями кальция поступает в растения, из которых может непосредственно или через животных поступить в организм человека. Так создается цепь передачи радиоактивного стронция: почва — растения — животные — человек. Проникая в организм человека, стронций накапливается преимущественно в костях и подвергает таким образом организм длительному внутреннему радиоактивному воздействию. Результатом этого воздействия, как показывают исследования ученых, проведенные в опытах на животных (собаках, крысах и др.), является тяжелое заболевание организма. На первый план выступают повреждения кроветворных органов и развитие опухолей в костях.
В обычных условиях «поставщиком» радиоактивного стронция являются экспериментальные взрывы ядерного и термоядерного оружия. Вполне понятно, какое беспредельное беспокойство всех честных ученых мира вызывают эти эксперименты. И не случайно сейчас во многих лабораториях земного шара ведутся тщательные исследования действия на организм малых доз радиоактивного излучения. Правда, факты, полученные учеными, еще недостаточны, чтобы окончательно судить о величине опасности действия малых доз, но и то, что уже получено, свидетельствует о большой угрозе, которую несут человечеству ядерные взрывы.
- Предыдущая
- 43/78
- Следующая