Выбери любимый жанр

Теория струн и скрытые измерения вселенной - Яу Шинтан - Страница 61


Перейти на страницу:
Изменить размер шрифта:

61

Строминджер и Вафа преобразовали задачу расчета микросостояний черной дыры и, соответственно, расчета энтропии в геометрическую задачу: сколько существует способов помещения D-бран в многообразия Калаби-Яу для получения желаемой массы и заряда? А эту задачу, в свою очередь, можно выразить через циклы: сколько сфер и объектов других форм минимального размера, вокруг которых можно обертывать брану, можно поместить внутрь многообразия Калаби-Яу? Ответ на оба этих вопроса, очевидно, зависит от геометрии данного многообразия Калаби-Яу. Если вы измените геометрию, то вы измените число возможных конфигураций, или число сфер.

Это общая картина, а сам расчет все еще оставался сложным, поэтому Строминджер и Вафа затратили много времени на поиск конкретного подхода к данной задаче, то есть способа, который действительно позволил бы ее решить.

Они взялись за слишком специфический случай и для своей первой попытки выбрали пятимерное внутреннее пространство, построенное путем прямого произведения четырехмерной K3-поверхности и окружности. Они также построили пятимерную черную дыру, расположенную в плоском пятимерном пространстве, с которым они могли бы сравнить структуру, построенную из D-бран. Это была не обычная черная дыра. Она обладала особыми свойствами, которые были отобраны так, чтобы сделать задачу «управляемой»: эта черная дыра была как суперсимметричной, так и экстремальной — последний термин означает, что она имела минимально возможную для данного заряда массу. Мы уже касались суперсимметрии, но о суперсимметрии черной дыры имеет смысл говорить только в том случае, если основной вакуум, в котором она находится, также сохраняет суперсимметрию. Это не так в низкоэнергетической области, которую мы населяем и где мы не можем увидеть суперсимметрию в частицах вокруг нас. Не можем мы ее увидеть и в черных дырах, которые наблюдают астрономы.

Как только Строминджер и Вафа смоделировали черную дыру, они смогли применить формулу Бекенштайна-Хокинга для расчета энтропии на основании площади горизонта событий. Следующим шагом был расчет числа способов конфигурирования D-бран во внутреннем пространстве так, чтобы это число соответствовало конструкции черной дыры заданного результирующего заряда и массы. Затем энтропию, вычисленную таким способом, равную логарифму числа состояний, сравнили со значением энтропии, полученным исходя из площади горизонта событий, и значения энтропий совпали. «Они утерли всем нос, получив и четверку в знаменателе, и ньютоновскую константу, и все остальное», — говорит гарвардский физик Фредерик Денеф. Денеф добавляет, что после двадцати лет попыток «мы, наконец, получили первый расчет энтропии черной дыры методами статистической механики».[139]

Это был главный успех Строминджера и Вафа, а также успех теории струн. Инь пояснил, что связь между D-бранами и черными дырами получила серьезный аргумент в свою пользу, и, кроме того, два физика показали, что само описание D-бран является фундаментальным. «Вас, вероятно, интересует, можно ли брану разложить на составляющие? Построена ли она из более мелких частиц? Сейчас мы уверены, что у браны не существует никаких дополнительных структур, потому что физики получили верное значение энтропии, а энтропия, по определению, пропорциональна числу всех состояний».[140] Если бы брана состояла из различных частиц, то она имела бы больше степеней свободы и, следовательно, больше комбинаций, которые необходимо было бы учитывать при расчете энтропии. Но результат, полученный в 1996 году, показывает, что это не так. Брана — это все, что есть. Хотя браны, имеющие различное число измерений, выглядят по-разному, ни одна из них не имеет субкомпоненты и не может быть разложена на составляющие. Аналогичным образом теория струн придерживается положения, что струна — одномерная брана в М-теории — это все, что есть, и она не может быть разделена на более мелкие части. Несмотря на то что соответствие между двумя очень разными методами расчета энтропии было встречено с энтузиазмом, оно вызвало удивление. «На первый взгляд кажется, что информационный парадокс черной дыры не имеет ничего общего с многообразиями Калаби-Яу, — заявляет физик Аарон Симонс из Брауновского университета. — Но ключом к ответу на этот вопрос оказался расчет математических объектов внутри многообразия Калаби-Яу».[141]

Теория струн и скрытые измерения вселенной - _59.jpg

Рис. 8.3а. Гарвардский физик Эндрю Строминджер (фотография Криса Сниббе, Гарвардский университет)

Теория струн и скрытые измерения вселенной - _60.jpg

Рис. 8.3б. Гарвардский физик Кумрун Вафа (фотография Стефани Митчелл, Новый офис Гарвардского университета)

Строминджер и Вафа не разрешили до конца информационный парадокс, хотя детальное описание черной дыры, к которому они пришли через теорию струн, показало, как именно могла бы сохраняться информация. Огури заявил, что они выполнили самый важный первый этап исследования, «показав, что энтропия черной дыры такая же, как и энтропия других макроскопических систем», включая горящую книгу из нашего предыдущего примера. Обе содержат информацию, которая, по крайней мере потенциально, является восстановимой.

Конечно, результаты 1996 года были только началом, поскольку первый расчет энтропии имел мало общего с реальными астрофизическими черными дырами. Черные дыры в модели Строминджера-Вафа, в отличие от тех, что мы наблюдаем в природе, были суперсимметричными — условие, необходимое для того, чтобы выполнить расчет. Тем не менее эти результаты можно распространить и на не суперсимметричные черные дыры. Как объясняет Симонс: «Независимо от суперсимметрии, все черные дыры содержат сингулярность. Это их главная определяющая черта, и по этой причине они являются “парадоксальными”. В случае суперсимметричных черных дыр теория струн помогла нам понять, что происходит вокруг этой сингулярности, и есть надежда, что результат не зависит от того, является объект суперсимметричным или нет».[142]

Кроме того, в статье 1996 года описан искусственный случай компактного пятимерного внутреннего пространства и плоского некомпактного пятимерного внешнего пространства. Но обычно пространство-время в теории струн подобным способом не рассматривается. Вопрос в том, применима ли эта модель к более распространенной модели: шестимерному внутреннему пространству и черной дыре, находящейся в плоском, четырехмерном пространстве? Ответ был дан в 1997 году, когда Строминджер вместе с Хуаном Малдасеной — тогда гарвардским физиком, и Эдвардом Виттеном опубликовали статью о своей первой работе, в которой использовалось более знакомое устройство шестимерного внутреннего пространства (разумеется, Калаби-Яу) и расширенного четырехмерного пространства-времени.[143] Воспроизведя расчет энтропии для трехмерного многообразия Калаби-Яу, Малдасена сказал, что «пространства, в которое вы помещаете браны, имеет более слабую суперсимметрию», и поэтому они ближе к реальному миру, а «пространство, в которое вы помещаете черные дыры, имеет четыре измерения, что соответствует нашим предположениям».[144] Кроме того, совпадение с расчетом Бекенштайна-Хокинга оказалась даже более сильным, потому что, как объясняет Малдасена, вычисление энтропии на основании площади горизонта событий является точным, только когда горизонт событий очень большой, а кривизна — очень маленькая. Когда размер черных дыр сокращается, а вместе с ним сокращается и площадь поверхности, приближение в рамках теории общей относительности становится хуже и необходимо вводить «поправки на квантовую гравитацию» в теорию Эйнштейна. В то время как первоначальная статья рассматривала только «крупные» черные дыры — крупные по сравнению с планковским масштабом, — для которых было достаточно учета эффектов, следующих из общей теории относительности — так называемого терма первого порядка, расчет 1997 года дал также первый квантовый терм в дополнение к первому гравитационному. Другими словами, согласие между двумя разными способами расчета энтропии стало гораздо лучше. В 2004 году Огури, Строминджер и Вафа пошли еще дальше, обобщив результаты 1996 года на любой вид черной дыры, которую можно сконструировать обертыванием браны вокруг цикла в регулярном трехмерном многообразии Калаби-Яу, независимо от ее размера, и следовательно, независимо от вклада квантово-механических эффектов. Авторы статьи показали, как вычислить квантовые поправки к теории гравитации не только для первых нескольких термов, но и для всего ряда, содержащего бесконечное количество термов.[145] Вафа пояснил, что, добавив в разложение новые термы, «мы получили более точный способ расчета и более точный ответ и, к счастью, даже более сильное согласие, чем раньше».[146] Это именно тот подход, который мы обычно пытаемся применить в математике и физике: если мы находим что-то, что работает в особых условиях, то пытаемся рассмотреть более общий случай, будет ли оно работать в менее жестких условиях, и, соответственно, определить, как далеко мы можем зайти.

61
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело