Выбери любимый жанр

Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - Кин Сэм - Страница 82


Перейти на страницу:
Изменить размер шрифта:

82

19. За пределами периодической системы

Нижний край таблицы Менделеева овеян тайной. Высокорадиоактивные элементы редко встречаются в природе, поэтому люди склонны интуитивно полагать, что нестабильные, легко распадающиеся элементы и будут самыми редкими. Так, например, редчайшим элементом является в высшей степени неустойчивый франций, который встречается в земной коре только как промежуточный продукт. В естественной среде атомы франция распадаются быстрее, чем атомы любого другого элемента. И все же самым редким элементом на Земле является вовсе не франций. Такой вот парадокс, и решение этого парадокса лежит за привычными и удобными рамками таблицы Менделеева. За решениями мы должны отправиться в удивительный край под названием «остров стабильности» – Новый Свет физиков-ядерщиков. Остров стабильности – своего рода Америка, на которую современные ученые-первооткрыватели возлагают большие надежды, ведь на сегодняшний день это самая удачная, если не единственная, возможность расширить границы периодической таблицы элементов.

Как известно, Вселенная на 90 % состоит из водорода. Оставшиеся 10 % составляет гелий. Все остальное вещество, включая нашу Землю массой 6 х 1024 кг, укладывается в статистическую погрешность. В этих миллионах миллиардов килограммов содержится ничтожное количество редчайшего элемента астата – лишь несколько десятков грамм. Чтобы хоть как-то представить эти пропорции, вообразите, что вы оставили свой «Бьюик Астат» на огромном паркинге и не можете его найти. В поисках машины вам придется пройти ряд за рядом, этаж за этажом, осматривая каждую машину. Небольшая оговорка: паркинг, на котором вам предстоит искать машину, составляет 100 миллионов парковочных мест в ширину, столько же в длину и 100 миллионов этажей в высоту. Более того, таких паркингов вам придется обойти ни много ни мало, а 160 – лишь в этом случае масштабы поиска вашей машины будут сопоставимы с поисками астата в земной коре. Вам ничего не останется, кроме как махнуть рукой и отправиться восвояси.

Поскольку астат является самым редким элементом, возникает вполне естественный вопрос: как ученым удалось его обнаружить? Дело в том, что они немного схитрили. Если в древней земной коре и был астат, он давно уже распался. Но астат в свою очередь является продуктом распада других радиоактивных элементов, которые испускают альфа– или бета-частицы. Зная общее количество исходных элементов (обычно это элементы, соседствующие с ураном в таблице Менделеева) и рассчитав вероятность появления астата в результате их распада, ученые могут назвать приблизительное количество атомов астата, существующих на Земле в любой момент времени, а также атомов некоторых других элементов. Так, например, франций, отделенный в таблице от астата лишь одной клеткой, существует на нашей планете в количестве от 550 до 850 г в любой момент времени.

Как ни странно, астат – более стабильный элемент, чем франций. Если взять миллион самых долгоживущих изотопов астата, половина из них распадётся через 400 минут. Половина такого же количества изотопов франция продержится всего-то 20 минут. Франций нестабилен настолько, что не имеет практического применения. Несмотря на то что в земной коре франций содержится в достаточном (хоть и мизерном) количестве, чтобы ученые могли напрямую его обнаружить, им никогда не удастся собрать столько атомов франция, чтобы его можно было увидеть невооруженным глазом. Если бы это все же удалось сделать, такое количество радиоактивного франция немедленно убило бы своего первооткрывателя. На сегодняшний день рекордное количество франция, полученного за один раз, составляет 10 тысяч атомов.

Получение видимого количества астата – задача, которая наверняка также останется невыполнимой. Тем не менее астат имеет важное практическое применение: его быстродействующие радиоактивные изотопы используются в медицине. Когда ученые под руководством нашего старого знакомого Эмилио Сегре впервые синтезировали астат в 1939 году, они решили изучить его свойства на морских свинках, сделав животным инъекции. В таблице Менделеева астат расположен прямо под йодом и ведет себя в организме подобно этому элементу: у морских свинок астат накапливался в щитовидной железе. Астат является единственным химическим элементом, открытие которого было подтверждено не приматами.

Странные сходства между астатом и францием начинаются с их ядер. Внутри ядер астата и франция, как и во всех других атомах, соперничают разные силы: сильные ядерные взаимодействия (силы притяжения) и электростатические силы (способные отталкивать частицы). Сильное ядерное взаимодействие – самая мощная из фундаментальных сил природы, но, как ни парадоксально, руки у нее коротки, словно тоненькие лапки огромного тираннозавра. Если частицы отдаляются друг от друга всего на несколько триллионных сантиметра, ядерные силы теряют всю свою мощь. По этой причине они редко проявляются за пределами атомных ядер и черных дыр. Но на подвластных ему небольших расстояниях эти взаимодействия в сотни раз мощнее электростатических сил. Это хорошо, поскольку они крепко удерживают протоны и нейтроны в ядре, не давая электростатическим силам разорвать атомные ядра на части.

На периферии ядер такого размера, как у франция и астата, сильное ядерное взаимодействие практически сравнивается с электростатическими силами, поэтому удержать все протоны и нейтроны в таком ядре становится очень сложно. У франция 87 протонов, и они совершенно не хотят соприкасаться друг с другом. Еще в ядре франция насчитывается порядка 130 нейтронов, которые образуют неплохой буфер между положительно заряженными частицами. Но в то же время они делают ядро столь массивным, что сильному взаимодействию не удается распространиться до самых границ и погасить центробежные силы. Именно поэтому франций (и по схожим причинам астат) являются крайне нестабильными элементами. Соответственно, логично предположить, что ядра с еще бо?льшим количеством протонов, чем у франция, должны испытывать на себе еще более мощные силы отталкивания, и более тяжелые атомы окажутся еще менее стабильными, чем франций.

Однако это лишь отчасти верно. Вспомните Марию Гёпперт-Майер («Мать из С. Д. получила Нобелевскую премию»). Мы уже говорили о том, что она разработала теорию о долгоживущих «магических» элементах. Так она называла элементы, в атомах которых содержится два, восемь, двадцать, двадцать восемь и т. д. протонов или нейтронов. Стабильность таких элементов оказалась гораздо выше, чем у их соседей по периодической системе. Другие количества протонов и нейтронов – например, девяносто два – также образуют компактные и довольно стабильные ядра, в которых сильные взаимодействия надежно удерживают протоны вместе. Именно поэтому уран гораздо устойчивее франция и астата, хотя и тяжелее их. По мере того как мы спускаемся все ниже и ниже по периодической системе, элемент за элементом, борьба между сильными взаимодействиями и электрическими силами все сильнее напоминает резко снижающийся график биржевого тикера. На нем прослеживается общая тенденция к понижению, но в то же время возникают многочисленные флуктуации, когда берет верх то одна сила, то другая[169].

Исходя из этого общего принципа, ученые предположили, что срок существования элементов тяжелее урана будет асимптотически приближаться к 0,0. Но по мере того, как в 1950-е и 1960-е годы удавалось синтезировать все более тяжелые элементы, стало происходить нечто неожиданное. Теоретически магические ядра должны встречаться до бесконечности, и оказалось, что гораздо ниже урана должен располагаться элемент с условно стабильным ядром – № 114. Более того, ученые из Калифорнийского университета в Беркли вычислили, что 114-й элемент может существовать значительно дольше, чем атомы примерно десяти предшествующих ему тяжелых элементов. Учитывая, как ничтожен период полураспада изотопов этих элементов (в лучшем случае – несколько микросекунд), подобная идея казалась нелогичной и дикой. Упаковка все новых протонов и нейтронов в искусственные ядра напоминает упаковку взрывчатки: чем больше частиц в ядре, тем более сильное напряжение оно испытывает. Но казалось, что элемент № 114 должен быть исключительно стабильным для такого крупного атома. Не менее странно (как минимум на бумаге) было и то, что элементы с атомными номерами 112 и 116 также должны испытывать на себе положительное влияние близости 114-й клетки. Даже имея «почти магическое» количество протонов, они должны были обладать сравнительно высокой стабильностью. Ученые окрестили это скопление элементов «островом стабильности».

вернуться

169

Третья из четырех фундаментальных сил – это слабое ядерное взаимодействие, регулирующее протекание бета-распада в ядрах атомов. Интересно отметить, что франций существует какое-то время именно потому, что на фоне борьбы сильного взаимодействия и электрических сил в атоме элемента действует еще и слабое взаимодействие, немного сглаживающее эту борьбу. Четвертая фундаментальная сила – это сила тяжести (гравитация). Сильное ядерное взаимодействие в сотни раз превосходит электромагнитные силы, а электромагнитные силы в сто миллиардов раз превосходят слабое взаимодействие. В свою очередь, слабое ядерное взаимодействие в десять миллионов миллиардов раз сильнее, чем гравитация. Чтобы представить себе масштабы этих соотношений, вспомните приведенный выше пример, описывающий низкую распространенность астата. Сила гравитации доминирует в нашей повседневной жизни исключительно потому, что сильные и слабые ядерные взаимодействия имеют крошечный радиус, а соотношение протонов и нейтронов вокруг нас достаточно равное, чтобы почти полностью нивелировать электромагнитные силы.

82
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело