Если бы числа могли говорить. Гаусс. Теория чисел - Лизана Антонио Руфиан - Страница 20
- Предыдущая
- 20/32
- Следующая
Академия наук была основана в Париже в 1666 году Кольбером, министром финансов Людовика XIV. В ее создании большую роль сыграла группа математиков, которые переписывались с Мареном Мерсенном (справа). Среди первых членов Академии были Рене Декарт, Пьер де Ферма и Блез Паскаль (1623-1662). Со времени создания в нее входили не только французы, но и, например, голландец Христиан Гюйгенс (1629-1695), который всю свою жизнь получал от Академии финансовую помощь. В 1699 году Академия была реорганизована под покровительством короля Людовика XIV, и ее центр разместился во дворце Лувра. Она была разделена на две основные части — математические науки (геометрия, механика и астрономия) и физические дисциплины (химия, ботаника и анатомия). Геометрия понималась в значении, принятом в классической Греции, и включала все отрасли математики. В течение XVIII века Академия способствовала научному прогрессу посредством публикаций, а также предоставляла научные консультации власти. После упразднения Академий, которое последовало за Революцией, в 1816 году она восстановила свою автономию и присоединилась к Институту Франции. Этот статус академия сохраняет по сей день.
В 1721 году Академия установила престижную систему премий, которые вручались за большой вклад в развитие математики и других наук, и благодаря им появились работы огромной важности в других научных дисциплинах. Существовал комитет экспертов по присуждению каждой большой премии, и в архивах Академии до сих пор хранятся стенограммы прений, касавшихся присуждения. В какие-то годы Академия решала, на какую тему должны быть написаны работы, претендующие на премию, например так было в 1816 и 1857 годах, когда работы должны были быть посвящены решению последней теоремы Ферма. Конечно же, в те годы конкурс никто не выиграл. Гаусс никогда не претендовал на премию Академии, поскольку держался особняком от французских научных институтов из-за военных действий, которые Франция вела в его стране.
Академия наук была основана Петром I в Санкт-Петербурге в январе 1724 года и сохраняла это название с 1724 до 1917 год. Первыми учеными, приглашенными работать в ней, стали признанные европейские математики Леонард Эйлер, Кристиан Гольдбах, Николай и Даниил Бернулли, эмбриолог Каспар Фридрих Вольф (1734-1794), астроном и географ Жозеф Никола Делиль (1688-1768), физик Георг Вольфганг Крафт (ок. 1700-1754) и историк Герхард Фридрих Мюллер (1705-1783). Гаусса также звали в Петербург, поскольку, вычислив орбиту Цереры, он приобрел широкую известность в научном мире, но ученый отказался от этого приглашения. Академия достигла большого успеха в развитии науки, практически не имевшего аналогов ни на европейском, ни на мировом уровне. Она продолжала работать даже в периоды исторических потрясений, а в 1934 году ее центр был перемещен в Москву вместе с большинством исследовательских институтов Советского Союза.
Эйлер также посвятил себя изучению простых чисел. Для него, как и для Гаусса, легче указать области математики, в которых он не сделал никаких открытий, чем наоборот. Страсть Эйлера к простым числам была усилена перепиской с Кристианом Гольдбахом, секретарем Петербургской академии наук.
Гольдбах, как и Мерсенн, не был профессиональным математиком, но его завораживала игра с числами и постановка числовых экспериментов. Именно Эйлеру он впервые рассказал о своей знаменитой гипотезе. Эйлер использовал помощь Гольдбаха для проверки доказательств своих гипотез о простых числах, поскольку в аргументации встречались не вполне обоснованные моменты. Также он очень интересовался гипотезами Ферма об этих числах. У Эйлера работа с простыми числами шла чрезвычайно хорошо, поскольку он обладал исключительными вычислительными способностями, виртуозно манипулировал формулами и обнаруживал скрытые связи. Его коллега, математик и один из реформаторов Парижской академии наук, Франсуа Араго (1786-1853) сказал: «Эйлер считает без видимых усилий, как люди дышат, а орлы летают».
Эйлер просто наслаждался вычислением простых чисел. Он составил их таблицы, включая числа до 100000 и даже больше. Как мы уже упоминали, ему удалось доказать, что пятое число Ферма не является простым — для этого ученый пошел теоретическим путем, поскольку для вычисления этого числа не хватало даже его способностей. А одним из самых любопытных открытий Эйлера стала формула, которая, казалось, генерирует огромное количество простых чисел. В 1772 году он вычислил все результаты, которые получаются, если присвоить х значения от 0 до 39 в уравнении х² + х + 41, и получил следующий список:
41,43, 47, 53,61,71,83,97,113, 131, 151,173, 197, 223, 251,281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033, 1097, 1163, 1231,1301, 1373,1447, 1523,1601.
Все эти числа простые. Начало казалось многообещающим, но при x = 40 и х=41 формула давала составные числа. И снова формула непрерывного и бесконечного порождения простых чисел ускользнула. Также Эйлер открыл, что если изменить независимый член уравнения и вместо 41 подставить 2, 3, 5, 11, 17, также получаются простые числа, но этот ряд всегда в конце концов прерывается. В 1751 году Эйлер пишет: «Есть некоторые загадки, в которые человеческий разум никогда не проникнет. Чтобы убедиться в этом, достаточно бросить взгляд на таблицы простых чисел. Мы заметим, что в них нет ни порядка, ни закона». Если даже великий Эйлер сдался, то проблема действительно серьезна. Так обстояли дела, когда вопросом заинтересовался Гаусс. Наш герой искренне восхищался Эйлером и даже сказал о нем, имея в виду теорию чисел:
«Особая красота этой сферы привлекала всех, кто активно занимался ее развитием; но никто не выражал этого так ярко, как Эйлер, который почти во всех своих многочисленных работах, посвященных теории чисел, постоянно говорит о том удовольствии, которое он получает от этих исследований и от приятных изменений, происходящих в работах, наиболее прямо связанных с практическим применением».
Как вы уже поняли, в течение многих веков математики безуспешно пытались найти формулу, которая бесконечно генерировала бы простые числа. Но Гаусс решил пойти другим путем и использовать новую стратегию. Собственно, этим он славился с юных лет: гениальность Гаусса в том и состояла, что он всегда шел к решению собственными путями, избегая очевидного и многажды опробованного. Ученый оставил поиск универсальных формул (путь, который всегда заводил в тупик), он попытался найти закономерность в распределении простых чисел и, если это возможно, математические выражения, определявшие эту закономерность. Так наметился перелом в подходе к проблеме, а последующие поколения математиков получили обширный материал для изучения, на основе которого были сделаны перспективные открытия. Идея Гаусса состояла в том, чтобы связать распределение простых чисел с логарифмами по основанию е. Казалось, что эта идея буквально вспыхнула в его живом математическом уме, однако на самом деле она вынашивалась годами, а полученные результаты надолго пережили ученого.
В 14 лет Гаусс получил в подарок книгу о логарифмах — необходимом инструменте для любого, кто интересуется арифметикой. С появлением математических калькуляторов логарифмы утратили часть своего значения, и сейчас их изучают не так интенсивно, как это было десятки лет назад. Причина в том, что логарифмы позволяли очень упростить математические операции.
- Предыдущая
- 20/32
- Следующая