Выбери любимый жанр

Том 9. Загадка Ферма. Трехвековой вызов математике - Виолант-и-Хольц Альберт - Страница 3


Перейти на страницу:
Изменить размер шрифта:

3

Глава 2

Все началось в Шумерии

Кто сказал, что история математики не так уж важна? Именно история математики хранит истоки человеческой мысли, рассказывает, как развивались идеи и где найти ключи к пониманию будущего. Это основное средство изучения математики и к тому же еще одна возможность насладиться ее красотой. История загадки Ферма уходит корнями на много тысяч лет назад, в Шумерию и Древнюю Индию. Ее истоки хранит знаменитая теорема Пифагора, которая гласит, что если х и у — катеты прямоугольного треугольника, a z — его гипотенуза, то х2 + у2 = z2.

Пифагор, несомненно, один из самых знаменитых математиков, а теорема Пифагора — одна из известнейших теорем. Тем удивительнее, что за несколько веков до его рождения эта теорема уже была известна. Настало время переименовать ее, но в честь кого ее следует назвать?

История, которую мы расскажем, начинается в 1800 году до н. э. близ Ларсы — крупного города шумеров, расположенного на юге современного Ирака. Тщательно размяв кусок глины, писец раскатывает его, чтобы получилась табличка. Он собирается написать на ней таблицу чисел, которая сохранится на много тысяч лет.

Табличка Плимптон 322

Примерно в 1922 году нью-йоркский издатель Джордж Артур Плимптон приобрел эту табличку у Эдгара Джеймса Бэнкса, торговца археологическими находками. Табличка находилась в неплохом состоянии, но справа посередине виднелась крупная трещина, а символы в верхнем левом углу было нельзя прочитать. И, что было еще интереснее, все указывало на то, что исходная табличка имела больший размер, поскольку левый край был неправильной формы, как будто обломан. Быть может, табличку повредили при раскопках? До нас дошла глиняная табличка размерами 13 x 9 x 2 см. Согласно Бэнксу, табличка была найдена в городе Сенкере (современное название Ларсы). Позднее исследователи сравнили стиль написания символов на этой и других табличках того времени и подтвердили, что Бэнкс не ошибся. Табличка датируется 1822–1784 годами до н. э. Иными словами, она была написана за несколько лет до захвата Ларсы войсками Хаммурапи в 1762 году до н. э. Плимптон умер в 1936 году и завещал эту табличку вместе со всей своей коллекцией Колумбийскому университету, где она хранится и поныне под номером 322. С тех пор эта табличка известна под названием Плимптон 322.

Том 9. Загадка Ферма. Трехвековой вызов математике - _03.jpg

Табличка Плимптон 322.

Вавилонская шестидесятеричная система счисления

В чем же загадка этой таблички? На ней в четыре столбца нанесены числа, записанные в системе счисления, которая отличается от нашей и имеет основание 60. Считается, что эта система, называемая шестидесятеричной, появилась в культуре шумеров в третьем тысячелетии до нашей эры и позднее была заимствована вавилонянами. Мы используем ее и сейчас при измерении времени, углов и географических координат. Десятичная и шестидесятеричная системы уживаются рядом: час делится на 60 минут, минута — на 60 секунд, но секунды делятся на десятые, сотые и тысячные доли уже в десятичной системе счисления. Несмотря на свое удобство, десятичная система не смогла полностью заменить шестидесятеричную, которую придумали наши предки шумеры. Окружность по-прежнему делится на 360 градусов, как и тысячи лет назад. Звездные часы послужили моделью для наручных часов, и даже современные цифровые часы по-прежнему имитируют движение стрелки по окружности, разделенной на 60 частей. Десятичная система используется уже много лет и даже веков, но сутки по-прежнему делятся на 24 часа.

Почему же шумеры использовали шестидесятеричную систему счисления? Число 60 не перестает удивлять нас своими замечательными свойствами. Одно из самых заметных его свойств — это большое количество делителей. Оно без остатка делится на двенадцать чисел: 1, 2, 3, 4, 3, 6, 10, 12, 15, 20, 30, 60. Ни одно из чисел, меньших 60, не имеет столько делителей. Это свойство особенно удобно при работе с дробями, так как вычисления заметно упрощаются. В то время не существовало вычислительных машин, и все, что могло упростить вычисления, было как нельзя кстати.

Многие математики считают, что удивительных свойств числа 60 достаточно, чтобы понять, почему же древние шумеры использовали шести десятеричную систему счисления.

Число 60 также тесно связано с простыми числами. Начнем с того, что оно находится между двумя простыми числами-близнецами (59 и 61) и является суммой двух простых чисел-близнецов (29 + 31). Его также можно представить в виде суммы четырех последовательных простых чисел (11 + 13 + 17 + 19).

Возможно, удивительнее всего то, что 60 — наименьшее число, которое можно получить в виде суммы двух простых чисел шестью разными способами. Это показано в таблице ниже.

Том 9. Загадка Ферма. Трехвековой вызов математике - _04.jpg

Уже в IV веке Теон Александрийский предположил, что число 60 было выбрано как основание системы счисления потому, что это наименьшее число, которое делится на 1, 2, 3, 4, 5 и 6. Развивая эту мысль, математик Дж. Г. ван дер Галиен показал, что если n — целое положительное число, делители которого, меньшие √n, являются последовательными числами, то n либо простое, либо удвоенное простое число, либо одно из чисел 1, 8, 12, 24, 60. Значит, 60 — наибольшее составное число, первые делители которого, не превышающие √n, являются последовательными.

* * *

СВЕРХСОСТАВНЫЕ ЧИСЛА

Натуральные числа, имеющие больше делителей, чем любое предшествующее им натуральное число, называются сверхсоставными. Найти первые сверхсоставные числа очень просто, что показано в таблице. Однако до сих пор не найдена формула, позволяющая найти все подобные числа.

Том 9. Загадка Ферма. Трехвековой вызов математике - _05.jpg

* * *

От десятичной системы мер к шестидесятеричной системе счисления

Однако этот и другие ответы не удовлетворяют некоторых исследователей. Существуют археологические находки, подтверждающие, что около 3500 года до н. э. шумеры использовали десятичную систему мер, и точно неизвестно, как и почему они перешли к шестидесятеричной системе счисления. В связи с этим важно отметить различие между системой счисления и системой мер. Система счисления используется для подсчета, сложения, вычитания и других арифметических действий. Система мер используется для измерения длин, площадей, объемов, углов, весов и даже времени. Хотя обе системы, как правило, совпадают, это не обязательно должно быть именно так. Мы сами используем десятичную систему счисления, которая сосуществует с шестидесятеричной системой измерения времени.

Австрийский исследователь Отто Нойгебауэр в начале XX века предположил, что в культуре шумеров после десятичной системы мер использовалась шестидесятеричная, свидетельств чему не сохранилось. Возможно также, что обе системы использовались одновременно. Нойгебауэр выдвинул версию, что исходная десятичная система мер была заменена системой с основанием 60, чтобы делить меры и веса на три части. Нам достоверно известно, что в системе мер и весов, которую использовали шумеры, в качестве основных дробей использовались 1/3 и 2/3. Однако это не объясняет, почему шестидесятеричная система не использовалась с самого начала.

Объединение народов, смешение систем

Другие исследователи, в частности, Г. Кевич, предполагают, что шумерская цивилизация могла возникнуть после объединения двух народов, один из которых использовал систему счисления по основанию 12, другой — систему по основанию 5. Хотя система счисления по основанию 5 была распространена не так широко, как десятичная, они могут иметь одинаковое происхождение, связанное с подсчетом на пальцах: в пятеричной системе использовались пальцы одной руки, в десятичной — пальцы обеих рук. Следуя этой теории, при слиянии народов система по основанию 60 возникла естественным образом, в ходе торговли.

3
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело