Выбери любимый жанр

Шаг за шагом. Усилители и радиоузлы - Сворень Рудольф Анатольевич - Страница 32


Перейти на страницу:
Изменить размер шрифта:

32
Шаг за шагом. Усилители и радиоузлы - _206.jpg

рис. 36, 4

При конструировании регулятора громкости нужно учитывать еще одну особенность слуха — резкое уменьшение чувствительности на низших частотах. Если мы будем постепенно уменьшать громкость с помощью обычного регулятора, то в области самых тихих звуков одновременно, помимо нашей воли, будет происходить регулировка тембра — будут непропорционально ослабляться низшие частоты. Поэтому, уменьшая громкость, нужно одновременно вращать ручку регулятора тембра и поднимать частотную характеристику в области низших частот. Существуют схемы, где такой подъем осуществляется автоматически, — это схемы регуляторов громкости с тонкомпенсацией.

В наиболее распространенной из них (рис. 36, 2, а, в) используется переменное сопротивление R2 с отводом 4, к которому подключена цепочка R1C1. Она срезает высшие и средние частоты и таким образом создает некоторый подъем в области низших частот. Однако, когда напряжение U'вх снимается со всего делителя R2 цепочка R1C1 существенной роли не играет. Значение и влияние ее возрастают по мере того, как движок переменного сопротивления R2 идет вниз (по схеме), приближаясь к зашунтированному участку 4–3.

Шаг за шагом. Усилители и радиоузлы - _203.jpg

рис. 36, 2

Аналогично работает и регулятор с двумя отводами (рис. 36, 3) и более сложной системой фильтрующих цепочек. Если в вашем распоряжении нет переменного сопротивления с отводами, можно сделать компенсированный регулятор громкости по простой схеме (рис. 36, 5) или по схеме (рис. 36, 6), где используются спаренные (то есть имеющие общую ось) переменные сопротивления R1 и R3.

Шаг за шагом. Усилители и радиоузлы - _204.jpg

рис. 36, 3

Шаг за шагом. Усилители и радиоузлы - _205.jpg_0

рис. 36, 5, 6

Уделив довольно много внимания элементам и цепям усилителя, с помощью которых можно исправить его частотную характеристику, нужно вспомнить и о тех элементах, которые могут частотную характеристику испортить. Это обычные RС-цепи, занимающие в усилителе самые ответственные «должности»: сопротивление нагрузки Rа, переходной конденсатор Сс2, сопротивление Rc, цепь автоматического смещения RкСк, цепь питания экранной сетки RэСэ и т. п. Чтобы цепи питания не вносили заметных частотных искажений, емкостное сопротивление конденсатора (его называют конденсатором развязки) должно быть на самой низкой частоте, во много раз (обычно считают достаточным в 5—10 раз) меньше, чем соответствующее активное сопротивление.

Чтобы лучше увидеть, как влияют на частотную характеристику другие элементы усилительного каскада, удобно рассмотреть его эквивалентную схему [8].

Анодной нагрузкой усилителя напряжения служит обычное сопротивление, и поэтому этот каскад называют реостатным. На его эквивалентной схеме (рис. 37, а) лампа заменена условным генератором переменного тока с внутренним сопротивлением Ri. Такую замену вполне можно допустить, так как для всех последующих цепей лампа действительно является всего лишь источником переменного тока — источником мощной копии усиливаемого сигнала. Эквивалентная схема составлена только для переменного тока, и поэтому один из выводов анодной нагрузки заземлен. Новым элементом является конденсатор Сск — входная емкость последующей лампы, к которой следует прибавить паразитную емкость монтажных цепей.

Основные цепи каскада образуют сложный делитель напряжения, который по-разному ведет себя на разных частотах. На высших частотах сопротивление конденсатора Сск уменьшается, он сильнее шунтирует Rэ1, то есть уменьшает сопротивление нагрузки. Если Rа1 будет значительно меньше емкостного сопротивления конденсатора Сск, то общее сопротивление участка будет в основном определяться величиной Rа1 и потому будет мало зависеть от частоты (рис. 30, 7, г). Отсюда напрашивается простой вывод: чтобы ослабить влияние Сск на высших частотах, нужно уменьшить Rа1, жертвуя усилением каскада.

Шаг за шагом. Усилители и радиоузлы - _176.jpg

рис. 30, 7

Конденсатор Сс2 вместе с участком вг образуют делитель, на правой (по схеме) части которого действует выходное напряжение Uвых. С уменьшением частоты емкостное сопротивление конденсатора Сс2 растет, и на нем действует все большая часть напряжения Ua~ и все меньшая часть этого напряжения приходится на долю Uвых. Иными словами, разделительный (переходный) конденсатор Сс2 — один из виновников завала частотной характеристики в области низших частот. Чтобы уменьшить это вредное влияние Сс2, нужно, чтобы его емкостное сопротивление даже на самых низших частотах было значительно меньше, чем сопротивление участка вг. Вот почему в качестве Сс2 используют конденсаторы сравнительно большой емкости — от 0,005 мкф (5000 пф) при большом сопротивлении Rc2 и до 0,1 мкф (100000 пф) при небольшом.

К разделительному конденсатору, независимо от его емкости, предъявляются два особых требования.

Во-первых, он должен быть рассчитан на сравнительно большое напряжение — не менее чем на 200–300 в. К этому конденсатору, кроме переменного, приложено еще и постоянное анодное напряжение Uа0; если он будет пробит (короткое замыкание между обкладками), «плюс» высокого напряжения Uа0 попадет на сетку лампы следующего каскада. При этом появится огромный анодный ток, и лампа Л2 выйдет из строя.

Во-вторых, сопротивление утечки конденсатора должно быть очень большим. Идеальных изоляторов нет, и прокладка между обкладками любого конденсатора в какой-то степени проводит ток. Поэтому нужно помнить, что параллельно конденсатору всегда подключена проводящая цепь — ее называют сопротивлением утечки Ry. Обычно сопротивление утечки очень велико — сотни и тысячи мегом, и в большинстве случаев им можно пренебречь. У электролитических конденсаторов Ry значительно меньше — сотни и даже десятки килоом, и это несколько ограничивает их применение. Сопротивление утечки Ry конденсатора Сс должно быть во много раз больше, чем Rc2. Оба эти сопротивления образуют делитель для постоянного анодного напряжения Uа0. И чем меньше Ry, тем значительнее та часть Uа0, которая действует на Rc2. Нетрудно сообразить, что это напряжение будет служить для последующей лампы положительным смещением, резко нарушающим режим каскада.

Как вы уже заметили, при выборе элементов усилительного каскада учитывается много различных факторов, причем зачастую противоречивых. Задавшись определенными начальными условиями: коэффициентом усиления (Ку) каскада, полосой воспроизводимых частот и допустимыми частотными искажениями, можно рассчитать все данные деталей — сопротивлений и конденсаторов, определяющих схему усилителя. Однако даже заметное отклонение какой-либо величины от расчетной, как правило, не приводит к неприятным последствиям. Так, например, увеличивать емкость конденсаторов Сэ и Ск (рис. 30, 30) можно во сколько угодно раз; сопротивления Ra, Rэ и Rc можно менять на 10–20 %, не опасаясь значительных искажений и изменений коэффициента усиления; емкость конденсатора Сс2 также можно значительно увеличить. Одно из ограничений связано с тем, что конденсаторы большей емкости имеют меньшее сопротивление утечки; сопротивление RкI нежелательно сильно изменять по сравнению с расчетными данными, так как оно в большой степени определяет режим лампы. Для иллюстрации влияния различных элементов схемы на работу усилительного каскада в табл. 15 приводятся данные деталей к схеме простейшего реостатного усилителя (рис. 30, 30).

32
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело