Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - Грасиан Энрике - Страница 2
- Предыдущая
- 2/30
- Следующая
С одного взгляда наш мозг способен распознать до пяти объектов. При больших количествах для подсчета приходится использовать другие стратегии.
* * *
Системы счета возникли на основе такого мощного процесса абстракции, который, по мнению многих специалистов, наряду с изучением языка является одним из самых серьезных достижений человечества за всю историю. Когда мы говорим «три», мы можем иметь в виду три овцы, три камня, три дома, три дерева, три чего угодно. Если бы приходилось использовать разные слова для описания количества разных объектов, первобытное сельскохозяйственное общество с самого начала было бы погребено под лавиной словесной информации. «Три» является абстрактным понятием, чисто ментальным образом, для которого требуется только одно слово и один знак, чтобы служить средством коммуникации в социальной группе.
Напомним, кстати, что повседневный язык также включает в себя процесс абстракции. Когда ребенок впервые узнает слово «стул», он называет им исключительно тот объект, на котором обычно сидит, но постепенно он понимает, что то же самое слово может относиться не только к одному высокому стулу, но и ко многим другим объектам с той же функцией. Процесс абстракции продолжается и в один прекрасный день переходит на более высокий уровень: появляется слово «сиденье», которое относится не только ко всем стульям, но и к скамейкам, табуреткам и всему, на чем можно сидеть.
Многие не любят математику, объясняя это тем, что она слишком абстрактна, как будто процесс абстракции является чем-то искусственным и неестественным.
Но это не так. Если бы мы не обладали способностью к абстракции, мы не смогли бы даже выработать общий язык. Иногда абстрактное мышление называют также непрактичным, но и это не соответствует действительности. Лишь наиболее абстрактный метод является наиболее практичным. Хорошим примером этого служит позиционная система счисления, которую мы используем в повседневной жизни самым «естественным» образом. В непозиционной системе символ, представляющий число, имеет одно и то же значение независимо от позиции, которую он занимает.
Например, в римской системе счисления число пять обозначается буквой V и имеет одно и то же значение в выражениях XV, XVI и VII. Однако если бы римская система была позиционной системой счисления, то в первом выражении символ V означал бы пять единиц, во втором — 50, а в третьем — 500.
Открытие позиционной системы счисления оказалось не совсем простым делом.
На это потребовалось более тысячи лет. Числа имеют долгую и интересную историю, но это не главная тема нашей книги. Будем считать, что числа нам уже известны и что, кроме того, мы уже знакомы с основными операциями сложения, вычитания, умножения и деления.
Цивилизация майя — одна из немногих древних цивилизаций, применявших позиционную систему счисления. Майя использовали только три символа: раковина обозначала ноль, точка — каждую единицу, тире — пять единиц.
Возьмем любое число, например, 12. Мы знаем, что мы можем выразить это число по-разному как произведение других чисел:
12 = 2 х 6;
12 = 3 х 4;
12 = 2 х 2 х 3.
Далее мы будем называть эти числа «делителями». Таким образом, мы будем говорить, что 3 является делителем числа 12. Делитель — это меньшее число, на которое делится большее, а именно, 12 делится на 3. Аналогично мы можем сказать, что 5 является делителем 20, потому что 20 делится на 5. В данном контексте под словом «делится» мы подразумеваем тот факт, что если разделить число 20 на 5, то получится натуральное число, в данном случае 4, а остаток от деления будет равен нулю.
Разложение числа на множители иногда называют факторизацией: от латинского слова facere — «делать» или «производить», потому что каждый множитель «производит» исходное число. В выражении 12 = 3 х 4 число 3 является одним из множителей, которые «производят» число 12.
Соответственно, на вопрос: «Какие числа являются делителями числа 12?» можно ответить, что числа 2, 3, 4 и 6 будут делителями числа 12, потому что при делении 12 на любое из них получается целое число. Делителем любого числа также является 1, так как каждое число делится на единицу и еще на само себя. Например, делителями числа 18 являются следующие числа: 1, 2, 3, 6, 9 и 18.
Теперь сделаем то же самое для числа 7, а именно найдем его делители. Мы увидим, что число 7 делится только на единицу и на само себя. То же самое верно и для чисел 2, 3, 5, 11 и 13. Эти числа и являются «простыми».
Теперь мы можем дать точное определение простого числа: число называется простым, если оно делится только на единицу и на само себя.
Эти рассуждения о натуральных числах содержали операции умножения и деления. В результате мы пришли к выводу, что некоторые числа являются особыми, и при нахождении определения, которое описывает их, мы использовали процесс абстракции. Дав этим числам название и определив их свойства, мы можем приступить к более глубокому их изучению.
* * *
ЗНАКИ ДЬЯВОЛА
В эпоху темного средневековья цифры считались тайными знаками «секретного письма». Именно поэтому закодированные сообщения до сих пор называют «зашифрованными сообщениями», так как слово «шифр» происходит от арабского слова «цифра». Строго говоря, только те сообщения, в которых буквы заменены цифрами, следует называть зашифрованными. Когда арабские цифры впервые появились в Европе, рьяные абацисты (счетоводы) заменяли их на счетах римскими цифрами, не желая использовать эти «дьявольские символы, которыми Сатана сбил арабов с пути истинного». Даже спустя шесть веков после смерти папы Сильвестра II, в 1003 г., церковники приказали вскрыть его могилу, чтобы проверить, нет ли там демонов, которые внушили ему интерес к науке сарацинов.
Гэрберт Орильякский, избранный папой римским под именем Сильвестра II, был папой-математиком.
* * *
Простые числа называют «кирпичами» в здании математики, «атомами» математики и «генетическим кодом» чисел. Дома строятся из кирпичей, все в природе состоит из атомов, а живые организмы определяются генетическим кодом. Все эти аналогии основаны на общем понятии: первичных элементах, из которых строится вся система. Рассмотрим теперь роль простых чисел в математике.
Как мы увидели, число может быть разложено на делители, или на множители. Так, число 12 можно представить в виде 3 x 4. Напомним, что при разложении на множители имеется в виду, что число 12 производится числами 3 и 4. Но мы также знаем, что число 12 может быть получено и из других чисел, например:
12 = 2 x 6 = 3 x 4 = 2 x 2 x 3.
Итак, процесс разложения числа на множители называется факторизацией. Напомним, именно этот процесс привел нас к точному определению простого числа, при факторизации которого мы получаем только единицу и само число в качестве множителей. Например, число 13 будет разложено так:
13 = 1 х 13.
Когда один из множителей в произведении повторяется, мы используем надстрочный индекс, равный количеству повторений. Например:
2 х 2 х 2 х 2 х 2 = 25;
З х З х З х З = 34.
В математике это называют «степенью». Читается это как 25 (два в пятой степени) и З4 (три в четвертой степени).
В предыдущем примере мы представили число 12 в виде трех произведений с различными множителями: 2 и 6; 3 и 4; 2, 2 и 3. Только последнее из этих произведений содержит лишь простые множители. Рассмотрим другой пример, число 20:
- Предыдущая
- 2/30
- Следующая