Золотая книга аквариумиста - Бейли Мэри - Страница 67
- Предыдущая
- 67/143
- Следующая
Наличие или отсутствие желудка обычно зависит от характера питания рыб данного вида. Некоторые травоядные рыбы, например карповые, вообще не имеют настоящего желудка и их называют «агастрическими». У некоторых рыб желудок может иметь совсем простую форму, но у крупных хищников он напоминает мешок и достаточно растяжим, чтобы вмещать и переваривать крупную добычу — например, целую рыбу. Перевариванию пищи в желудке способствуют ферменты — такие как пепсин или трипсин, а также гидрохлорная кислота (желудочный сок у рыб может быть очень кислым, и в некоторых случаях рН опускается ниже 2).
Из желудка (если он имеется) пища поступает в кишечник, где происходит её дальнейшее переваривание. В маленьком органе, который называется желчным пузырём, хранится жёлто-зелёная желчь, вырабатываемая печенью. Желчный пузырь периодически опустошается, и желчь попадает в кишечник, где она способствует перевариванию жиров, превращая их в эмульсию. Ферменты из поджелудочной железы тоже попадают в кишечник и помогают переваривать углеводы. Кишечник — это основное место переваривания пищи. Питательные вещества проникают сквозь его оболочку и попадают в кровяной поток.
Общая длина кишечного тракта зависит от пищевой ориентации рыбы. Обычно у всеядных и травоядных рыб кишечник длинный, а у плотоядных — сравнительно короткий. Время, необходимое для того, чтобы пища прошла через пищеварительную систему, может быть разным в зависимости от вида рыбы и других факторов (например, от размеров проглоченной пищи и температуры воды). Оно может колебаться от нескольких часов до недели (а иногда и больше) у некоторых плотоядных рыб.
Вся непереваренная пища выходит через анальное отверстие в виде экскрементов вместе со значительным количеством мочи. Экскременты, которые могут иметь разные цвет и консистенцию в зависимости от последней съеденной пищи, содержат непереваренные протеины, углеводы и жиры вместе с клеточным веществом самой рыбы.
Чтобы жить, рыбы, как и другие животные, должны получать кислород из окружающей среды. Потребление кислорода и отдача углекислого газа как побочного продукта называется процессом дыхания. Такой газовый обмен происходит как у рыб, так и у наземных позвоночных животных. Однако дыхательные органы у представителей этих двух групп животных отличаются. У наземных животных — таких, как млекопитающие и птицы — газовый обмен происходит в лёгких, в то время как у большинства видов рыб аналогичными органами являются жабры. Жабры должны действовать гораздо эффективнее, чем лёгкие у наземных животных, поскольку в воде содержится только 2-3% от количества свободного кислорода, присутствующего в воздухе.
Рыбы имеют два набора жабр — по одному с каждой стороны тела позади головы. Эти нежные органы защищены твёрдыми пластинами, которые называются жаберными крышками. Каждый набор жабр представляет собой сложную структуру, включающую четыре костные дуги. Каждая из этих дуг поддерживает два ряда жаберных волокон в форме перьев, которые называются первичными ламеллами (лепестками). Каждая первичная пластинка, в свою очередь, покрыта крошечными пластинками (вторичными лепестками), через которые проходят узкие кровяные капилляры. Именно через тонкую оболочку вторичных лепестков происходит газообмен между кровью и внешней средой. Кровь во вторичных лепестках течёт в направлении, противоположном направлению движения воды, проходящей по поверхностям ламелл. В результате между этими двумя жидкостями возникает большой диффузионный градиент кислорода и углекислого газа. Такая система «противотока» чрезвычайно увеличивает эффективность газообмена.
Рыбы в большинстве своём вынуждены активно прокачивать воду через жабры, чтобы добиться достаточно интенсивного газообмена. Приняв во внимание, что вода приблизительно в 800 раз плотнее воздуха, становится ясно, что рыба в процессе дыхания должна тратить больше энергии, чем наземное животное. Процесс прокачки воды включает определённую последовательность действий. Сначала рыба открывает рот, чтобы вода втягивалась в ротовую полость. Затем рот закрывается, и сокращение мышц заставляет воду проходить через жабры, а потом наружу через жаберные крышки. В результате вода постоянно протекает через жабры.
Уровень дыхательной активности рыб можно приблизительно определить через скорость колебания жабр (иначе говоря, скорость колебания жаберных крышек или просто «скорость дыхания»). Скорость дыхания увеличивается при повышении активности, испуге и при определённом состоянии воды. Особенно это заметно при повышении температуры, которое приводит к повышению скорости дыхания рыбы и вызывает двойной эффект: с повышением температуры, во-первых, уменьшается концентрация растворённого кислорода, а во-вторых, возрастает скорость метаболических процессов у рыбы, а следовательно, и потребность в кислороде. Повреждения жабр, вызванные окружающей средой или болезнетворными микроорганизмами, приводят к усилению дыхательной деятельности — рыба старается получить достаточное количество кислорода через повреждённую поверхность жабр.
Принимая во внимание, что содержание кислорода в воздухе более чем в 30 раз больше, чем в воде, может показаться удивительным, что рыбы могут умереть от кислородного голодания, когда их вытаскивают из воды. Причина этой видимой аномалии заключается в том, что, если рыба находится вне воды, ламеллы жабр разрушаются, так что площадь поверхности, доступная для газообмена, сильно сокращается. Если жабры высыхают в результате продолжительного нахождения в воздухе, газообмен прекращается полностью и рыба погибает. Длительность выживания в воздухе значительно меняется в зависимости от вида, но есть общее правило: рыб нельзя держать вне воды более одной-двух минут.
Некоторые рыбы способны в течение длительного времени оставаться вне воды без ущерба для здоровья или выживать в воде, бедной кислородом. У этих рыб есть особые дополнительные дыхательные органы, которые позволяют им извлекать из атмосферы кислород путём заглатывания воздуха. Хорошо известные примеры среди аквариумных рыб — это гурами (разные роды) и бойцовые рыбы (петушки Betta spp.) из семейства белонтиевых, многие из которых в природных условиях водятся в прудах, бедных кислородом. Этих рыб, а также представителей многих родственных видов иногда называют лабиринтовыми рыбами, потому что они имеют дополнительный дыхательный аппарат — лабиринт. Эта структура, содержащая множество складок с обильным кровоснабжением, связана с наполненной воздухом глоточной камерой. Органы с похожими функциями есть также у некоторых сомов, которые способны выживать в условиях низкого содержания кислорода, характерных для пересыхающих прудов, и у рыб, способных мигрировать по суше, — хорошо известным примером может служить сом клариас Clarias.
Некоторые другие сомы (например, коридорас Corydoras spp.) и вьюны (семейство вьюновые Cobitidae) способны поглощать атмосферный кислород непосредственно через стенки своего кишечника, пронизанные кровеносными сосудами. Часто можно наблюдать, как эти рыбы, которые в аквариуме обычно находятся на дне, периодически направляются к поверхности воды, чтобы сделать большой глоток воздуха. Это совершенно нормальное поведение, и оно не обязательно свидетельствует о том, что вода в аквариуме бедна кислородом.
Основная функция кровеносной системы — снабжение разных органов и тканей кислородом и питательными веществами, а также удаление побочных продуктов обмена веществ. Кровеносная система в основном состоит из сердца, а также сети артерий, вен и тонких капилляров. Сердце работает как насос. Оно находится рядом с жабрами и состоит из четырех камер: венозного синуса, предсердия, желудочка и артериального конуса (луковицы). Из них самые крупные — это предсердие и желудочек. Они настолько крупнее остальных, что иногда можно встретить утверждение, что этот орган состоит только из двух камер.
- Предыдущая
- 67/143
- Следующая