Выбери любимый жанр

12 тверских математиков - Воробьев Вячеслав Михайлович - Страница 31


Перейти на страницу:
Изменить размер шрифта:

31

Четвёртый фактор, определивший успех в работе Владимира Модестовича, — его дальновидность, умение видеть перспективность и практическое значение выбранной темы. Владимир Модестович обладал особой способностью — научной прозорливостью. Он своевременно улавливал и точно формулировал те вопросы, которые на данном этапе развития науки и школьного образования являлись актуальными, сам выдвигал их и способствовал их развитию и совершенствованию. Он быстро реагировал на все изменения в требованиях к школьному образованию и соответствующей подготовке учителей и отражал их в своих работах. Вследствие этого его учебник для студентов пединститутов «Методика преподавания математики», вышедший первый раз в 1949 г., содержит идеи, которые совпадают с передовыми взглядами методистов и учителей 70-х гг. Поэтому «Методика...» является до сих пор полезным учебником для студентов и необходимым пособием для учителей средних школ.

В силу такой способности он направлял свои усилия и усилия своих аспирантов на разработку разнообразных, интересных тем, всегда соответствующих духу времени. Например, в 60-е гг. он выпустил ряд книг, посвящённых приближенным вычислениям, работе с логарифмической линейкой, так как эти темы впервые включались в программу средней школы. Его аспиранты представили диссертации и статьи по следующим вопросам: «Из опыта изучения математических таблиц» (А.К. Артёмов, 1955), «Метод последовательных приближений и его использование в средней школе» (Н.И. Бибикова, 1955), «Графические вычисления в школе» (К.И. Кабанова, 1954), «Счётная логарифмическая линейка в школе» (К.И. Кабанова, 1958), «Измерение геометрических величин в школьном курсе математики» (А.Ф. Спасский, 1958), «Как помочь учащимся находить путь к решению геометрических задач» (Е.Ф. Данилова, диссертация — 1958, книга — 1961), «Изучение геометрических преобразований в 8 классе» (Е.Ф. Данилова, 1963), «Индукция в геометрии» (Л.Н. Ерошкина, 1954), «Понятие о геометрии Лобачевского» (Я.И. Груденов, 1963), «Комплексные числа и их применение в геометрии» (М.В. Гиршович, 1963) и др.

Пятый фактор, способствующий успеху в работе Владимира Модестовича, заключался в том, что он свою научно-исследовательскую и педагогическую деятельность проводил в течение полувека в одном и том же высшем учебном заведении — Калининском педагогическом институте, в котором работал с 1921 по 1973 год. Здесь он начал свою учёную карьеру, здесь он рос, достиг известности и признания и принёс славу институту. Оппоненты, приезжавшие из других городов на защиты (например, Р.А. Хабиб), говорили, что они гордятся тем, что им пришлось выступить в институте, в котором работает их общий учитель, признанный авторитет по методике преподавания математики и по теории приближенных вычислений — профессор В.М. Брадис.

Три направления научно-исследовательской деятельности Владимира Модестовича Брадиса

I. Теоретическая и методическая разработка вопросов, связанных с повышением вычислительной культуры учащихся

В научно-исследовательской работе В.М. Брадиса можно выделить три направления. Первое, являющееся основным, сосредоточено на теоретической и методической разработке вопросов, связанных с повышением вычислительной культуры учащихся средних школ и соответствующей подготовкой учителей, призванных выполнить эту задачу. Решению данной проблемы В.М. Брадис посвятил всю свою жизнь. Идея возникла в студенческие годы, когда ему пришлось самому встретиться с необходимостью производить вычисления и наблюдать за работой других вычислителей. Здесь он убедился, что многие испытывают большие трудности вследствие того, что не владеют приёмами вычислений с приближенными данными. К этому времени имелись труды академика-кораблестроителя Алексея Николаевича Крылова. Но требовалось дальнейшее совершенствование, обоснование и пропаганда применяемых методов для использования их в школьном курсе математики. Эту задачу выполнил В.М. Брадис. Он проводит тщательное изучение вопроса и результаты исследования излагает в своих работах. Подвергая жестокой критике существующие сборники задач, Владимир Модестович с горечью отмечает, что «вопрос о недопустимом расхождении между вычислительной работой учащихся средней школы и практическими требованиями жизни вот уже более века является одним из нерешённых вопросов методики преподавания математики» (В.М. Брадис. Вычислительная работа в курсе математики средней школы. М., 1962. С. 3). Действительно, школа учит учащихся вычислительной работе на решении надуманных задач и формул с искусственно подобранными данными, при которых деления совершаются без остатка, корни извлекаются нацело, ответы выражаются натуральными числами.

Владимир Модестович отмечает, что за последние 50 лет математическая наука и её практические приложения шагнули далеко вперёд, а школьные задачники делают по части вычислительной культуры весьма робкие шаги, не вносящие заметного улучшения в повышение вычислительной культуры. Причинами застоя, по мнению В.М. Брадиса, являются, во-первых, сила традиций и, во-вторых, недостаточная разработанность научной основы практических приёмов вычислений с приближенными данными. Решением этих проблем В.М. Брадис занялся с первых лет работы в институте. Он тщательно анализирует три выделившихся в теории вычислений направления.

Первое, которое он называет классическим, — вычисление со строгим учётом погрешностей. Оно проявляется в двух видах. 1) способ границ погрешностей, когда указывается предельная, т.е. наибольшая абсолютная или относительная погрешность всякого приближенного значения, и 2) способ границ, когда указывается низшая и высшая граница, между которыми заключено приближенное число. В методической литературе рассматривается только способ границ погрешностей, в то время как способ границ более прост по идее, строже по существу и имеет применение в научной работе. Им пользовался Архимед (287—212 гг. до н.э.). Он, например, вычислив с большой точностью число ПИ, указал две границы приближенного его значения: 310/71 ПИ <3 1/7. Способ границ погрешностей, теоретически разработанный, в школе применим мало, так как требует, во-первых, значительных дополнительных расчётов и, во-вторых, обоснований используемых теорем, которые доступны учащимся старших классов.

Способ границ вполне доступен учащимся 7-х и даже 6-х классов, но обоснование его совершенно не рассматривается в методической литературе. В силу сказанного ни один из них не может стать основным способом в школьных вычислениях.

Второе направление, которое Владимир Модестович назвал техническим, есть вычисление без строгого учёта погрешностей. Основной его принцип сформулирован академиком А.Н. Крыловым; результат всякого вычисления есть число. Его следует писать так, чтобы по начертанию можно было судить о степени точности; для этого примем за правило писать число так, чтобы в нём все значащие цифры кроме последней были верны, и лишь последняя цифра была бы сомнительной и притом не более, как на одну единицу. Желание выполнить последнее требование принципа приводит к тому, что приходится следить за тем, чтобы абсолютная погрешность каждого приближенного результата была не более единицы разряда последней его цифры. Тогда, в сущности, происходит вычисление со строгим учётом погрешностей. Сам А.Н. Крылов и некоторые другие не следили за буквальным выполнением последнего требования, допуская некоторую неопределённость границы погрешности последней сохраняемой цифры результата. В силу этой неопределённости техническое направление не пользовалось доверием методистов и в школе не применялось.

Третье направление, которое Владимир Модестович назвал геодезическим, основано на теории вероятности. Здесь исследуется не только предельная погрешность приближенного значения, но и вероятности различных значений этих отклонений.

в работах данного направления нет достаточно удобных общих правил, вследствие чего требуются дополнительные усилия, чтобы устанавливать, какие цифры результата каждого действия над приближенными значениями величин следует сохранять.

31
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело