Выбери любимый жанр

Нестандартные задачи по математике в 3 классе - Левитас Г. - Страница 7


Перейти на страницу:
Изменить размер шрифта:

7

Уменьшаемое является произведением, содержащим множитель 25 и множитель 16, а значит, делится на 100. Значит, уменьшаемое оканчивается двумя нулями, а все выражение — цифрами 12.

Ответ: 12.

Задача 68. Попытайся понять, как составлена эта последовательность, и продолжи ее: 2, 20, 40, 400, 800.

Второе число получается из первого умножением на 10, третье из второго — умножением на 2, далее снова умножением на 10 и т. д. Можно и дальше действовать так же, чередуя умножение на 10 и на 2.

Ответ: 2, 20, 40, 400, 800, 8000, 16000…

Задача 69. Часы отбивают каждый час столько ударов, сколько они показывают часов, а каждые полчаса — один удар. Сколько ударов сделают они с часу дня до двенадцати часов ночи?

(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12) + 11.

Ответ: 89.

Задача 70. Расшифруй фразу, зашифрованную шифром Юлия Цезаря: ТСЕХСУЗРЯЗ — ПГХЯ ЦЪЗРЯВ.

Решение получается из рисунка:

Нестандартные задачи по математике в 3 классе - i_033.jpg

Ответ: ПОВТОРЕНЬЕ — МАТЬ УЧЕНЬЯ.

Задача 71. Размести числа от 1 до 9 в клетках квадрата, чтобы суммы чисел по всем горизонталям, вертикалям и диагоналям равнялись между собой. Почему число 3 не может стоять в угловой клетке?

Смотри задачу 59.

Ответ: Один из возможных квадратов:

Нестандартные задачи по математике в 3 классе - i_034.jpg

Число 3 не может стоять в угловой клетке, так как 3 входит только в две тройки, дающие в сумме 15 (3 + 4 + 8 и З + 5 + 7), а угловая клетка входит в один столбец, в одну строку и в одну диагональ, то есть участвует в трех суммах.

Задача 72. В концерте решено исполнить произведения Глинки для симфонического оркестра: Вальс-фантазию, Арагонскую хоту, Камаринскую и «Ночь в Мадриде». Сколькими способами можно установить порядок их исполнения?

На первое место можно поставить любое из четырех произведений, на второе — любое из трех оставшихся. Значит, выбор первых двух произведений можно осуществить 12 способами. В любом из этих способов третьим можно поставить любое из двух оставшихся произведений. Так что первые три произведения можно назвать 24 способами. Теперь последнее произведение определяется однозначно — это то, которое не названо среди первых трех. Значит, всего можно определить порядок следования произведений 24 способами. Кратко это решение можно высказать так: первым может быть исполнено любое из четырех музыкальных произведений, вторым — любое из трех оставшихся, третьим — любое из двух оставшихся, четвертым — одно оставшееся; значит, всего таких программ 4 · 3 · 2 · 1 = 24.

Задача 73. 6 котов за 6 минут съедают 6 мышей. Сколько понадобится котов, чтобы за 100 минут съесть 100 мышей?

Обычный ответ: «100 котов» — неверен. Правильный ответ: «6 котов». Чтобы это понять, полезно себе представить 6 котов как единую «бригаду», которая за 6 минут съедает 6 мышей, а значит, в 1 минуту съедает 1 мышь. Но тогда она съест 100 мышей за 100 минут, что и требуется.

Ответ: 6.

Задача 74. Сколько разломов придется сделать, чтобы разломать эту шоколадку на отдельные кусочки?

Нестандартные задачи по математике в 3 классе - i_035.jpg

Скорее всего, дети будут подсчитывать число разломов при некотором выборе порядка действий. Например, двумя разломами разделить шоколадку на три полоски, а потом каждую полоску шестью разломами разделить на отдельные 7 кусочков:

Нестандартные задачи по математике в 3 классе - i_036.jpg

Получается 2 + 6 · 3 = 20 разломов. Или сначала шестью разломами разделить шоколадку на семь полосок по 3 куска в каждом, а потом двумя разломами разделить каждую полоску на отдельные кусочки:

Нестандартные задачи по математике в 3 классе - i_037.jpg

Получается 6 + 2 · 7 = 20 разломов. Но нужно объяснить, что способов разлома существует много (сколько? — отдельная задача!). Возможен такой вариант:

Нестандартные задачи по математике в 3 классе - i_038.jpg

А во-вторых, не странно ли совпадение ответов? В любом случае получится 20 разломов потому, что первоначально мы имеем 1 (большой) кусок шоколада, а в конце должны получить 21 (маленький) кусочек. А каждый разлом увеличивает число кусков на 1. Первый разлом — два куска, второй — три, и так далее. Двадцатый разлом — 21 кусок.

Ответ: 20.

Задача 75. 6 человек стоят у лифта 7-этажного дома. Они живут на разных этажах, от 2 до 7. Лифтер хочет доехать до одного какого-нибудь этажа, а там пусть идут пешком. Спуститься на один этаж — неудовольствие, подняться на один этаж — двойное неудовольствие. На каком этаже надо остановить лифт, чтобы сумма неудовольствий была наименьшей?

Смотри решение задачи 29. Если лифт остановится на этаже не ниже 4, то жилец 3 этажа должен идти пешком. Сумма неудовольствий при остановке на 6 этаже минимальна — равна 10 (два для жильца 2 этажа, три для жильца 3 этажа, два для жильца 4 этажа, одно для жильца 5 этажа и два для жильца 7 этажа). Желательно составить таблицу, аналогичную той, что дана в задаче 29. При остановке лифта на 7 этаже можно заставить жильца 3 этажа идти пешком для экономии электроэнергии.

Ответ: На 6 этаже.

Задача 76. Перерисуй по клеткам угол АВС.

Нестандартные задачи по математике в 3 классе - i_039.jpg

Задача 77. Какими двумя цифрами оканчивается выражение

3573 · 3574 · 3575 · 3578 — 3579.

Уменьшаемое содержит множитель 3575, делящийся на 25, и множители 3574 и 3578, делящиеся на 2. Значит, уменьшаемое делится на 100, а все выражение оканчивается на 21.

Ответ: На 21.

Задача 78. Два кладоискателя хотят разделить добычу поровну, чтобы никто не мог сказать, что его обманули при дележе. У них нет никаких средств для измерения добычи или ее частей, кроме собственного глазомера. Как им быть?

Ответ: Один делит на две равные (по его мнению) части, а другой выбирает ту часть, которая ему больше нравится.

Задача 79. В классе все дети изучают английский и французский языки. Из них 17 человек изучают английский, 15 человек — французский, а 8 человек изучают оба языка одновременно. Сколько учеников в классе?

Нарисуем два пересекающиеся круга:

Нестандартные задачи по математике в 3 классе - i_040.jpg

Левый пусть обозначает изучающих английский, правый — изучающих французский. А в общей части будут те, кто изучает оба языка. По условию, в центральной части находятся 8 учеников. Значит, в левой части их 17 — 8 = 9, а в правой части их 15 — 8 = 7. Итого в классе 9 + 8 + 7 = 24 человека.

По вопросам эта задача решается так.

1) Сколько учеников изучает только английский? 17 — 8 = 9.

2) Сколько учеников изучает только французский? 15 — 8 = 7.

3) Сколько учеников в классе? 9 + 7 + 8 = 24.

7
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело