Выбери любимый жанр

Электроника в вопросах и ответах - Хабловски И. - Страница 48


Перейти на страницу:
Изменить размер шрифта:

48

где Кu — коэффициент усиления усилителя в диапазоне средних частот; f — частота, для которой рассчитывается усиление.

Видно, что при f = fн К'u = 0,707·Кu. Конденсатор связи Сс2 вносит в схему некоторый фазовый сдвиг между выходным и входным напряжениями. Этот сдвиг увеличивается, если частота снижается, и при частоте fн составляет 225°, т. е. на 45° больше, чем сдвиг в диапазоне средних частот.

Как работает ламповый резистивный усилитель и какова его схема?

Наиболее простые схемы такого усилителя на триодах и пентодах показаны на рис. 7.10.

Электроника в вопросах и ответах - _243.jpg
Электроника в вопросах и ответах - _244.jpg

Рис. 7.10. Триодный (а) и пентодный (б) резистивные усилители с емкостной связью

Напряжение питания около 200 В подводится между точками, обозначенными Еа, и массой схемы. Анодный ток протекает через лампы, а также резисторы Rк и Rа. Падение напряжения на резисторах Rк обеспечивает соответствующие отрицательные сеточные напряжения, т. е. задает рабочие точки на сеточных характеристиках. Конденсаторы Ск, включенные параллельно резисторам Rк, имеют малое сопротивление для переменных напряжений, благодаря чему сеточные напряжения остаются постоянными. Резисторы Rc — это сопротивления утечки. Они образуют цепь, по которой электроны, перехваченные управляющей сеткой лампы, могут быть отведены на катод. При отсутствии такого пути утечки накопленные на сетке электроны вызвали бы возникновение на сетке отрицательного напряжения, существенно нарушающего работу усилителя. Обычно сопротивление резистора Rc не превышает 1 МОм.

В случае усилителя на пентоде для обеспечения правильной работы лампы необходимо соединить третью сетку лампы с катодом или массой, я также вторую сетку (экранную) — с источником напряжения питания Еа. Если требуемое напряжение питания второй сетки меньше, чем напряжение Еа, то ее соединяют с источником напряжения Еа через гасящий резистор Rэ. Экранная сетка в пентоде действует аналогично аноду, поэтому при работе лампы в качестве усилителя напряжение между экранной сеткой и массой изменяется.

Чтобы воспрепятствовать этим нежелательным изменениям, между экранной сеткой и массой включают конденсатор большой емкости. Он представляет собой короткое замыкание для переменных токов, и благодаря этому потенциал экранной сетки поддерживается на постоянном уровне.

Если на вход схемы подать переменное напряжение, то оно наложится на постоянное сеточное напряжение и вызовет изменение потенциала между сеткой и катодом. В результате изменений этого потенциала изменятся анодный ток и падение напряжения на нагрузочном сопротивлении Ra. Следует добавить, что выходное напряжение имеет полярность обратную полярности выходного, что для импульсных сигналов означает инверсию (поворот) фазы на 180°. Незначительное изменение напряжения в цепи сетки может вызвать изменение анодного тока на несколько миллиампер. При большом сопротивлении резистора Ra на нем возникает падение напряжения, во много раз превышающее входное напряжение. Поэтому схема работает как усилитель напряжения.

Коэффициент усиления схемы в диапазоне средних частот выражается следующей формулой:

Кu = — S·Ra,экв

где S — крутизна сеточной характеристики лампы; Ra,экв — сопротивление нагрузки лампы.

В пентодном усилителе из-за большого внутреннего сопротивления Ri пентода нагрузка представляет собой параллельное сопротивление резисторов Ra и RC2; в триодном усилителе необходимо еще учитывать включенное параллельное сопротивление Ri.

Конденсаторы Сс1 и Сс2 являются конденсаторами связи, которые выполняют те же задачи, что и конденсаторы связи в транзисторном усилителе. Однако емкости конденсаторов из-за высокого сопротивления сеточной цепи значительно меньше и не превышают обычно 0,5 мкФ. Конденсаторы связи, блокирующие катодные резисторы, оказывают влияние на ход кривой усиления в диапазоне низких частот, тогда как входные и выходные емкости ламп, а также емкости соединительных проводников ограничивают полосу усилителя со стороны высоких частот.

Что такое произведение коэффициента усиления на ширину полосы пропускания?

Произведение коэффициента усиления на ширину полосы GB[20], называемое также площадью усиления, является параметром, определяющим способность активного элемента усиливать в широкой полосе частот. Из формулы для верхней граничной частоты, которая определяет ширину полосы, следует, что эта частота тем больше, чем меньше сопротивление Rэкв, являющееся нагрузкой усилителя. Однако, с другой стороны, меньшему сопротивлению соответствует меньшее усиление, и поэтому требование большой ширины полосы противоречит возможности получения большого коэффициента усиления усилителя. Оказывается, например, что для пентода произведение GB имеет постоянное значение и выражается следующей зависимостью:

B = S/2πСполн

где S — крутизна сеточной характеристики пентода; Сполн — сумма емкостей, шунтирующих сопротивление нагрузки усилительного каскада.

Если S = 10 мА/В и С = 20 пФ, то GB = 80 МГц. Это означает, что при ширине полосы В = 10 МГц усиление G = 8, т. е. наблюдается «обмен» между усилением и полосой при сохранении постоянства их произведения. Проблема «обмена» усиления и полосы не очень существенна в усилителях низкой частоты, поскольку площадь усиления обычно больше требуемой. Эта проблема становится существенной и в широкополосных усилителях, в которых площадь усиления является решающим фактором, ограничивающим коэффициент усиления схемы. В триодном усилителе произведение коэффициента усиления на ширину полосы пропускания не является постоянным. Это следует из того факта, что емкость возрастает при росте коэффициента усиления (эффект Миллера) и уменьшении ширины полосы. При больших усилениях и малых полосах площадь усиления меньше, чем в противоположном случае.

В транзисторных усилителях произведение GB также не является постоянным и достигает максимального значения при оптимальных сопротивлении резистора, шунтирующего входную цепь транзистора, коэффициенте усиления и ширине полосы. Кроме того, для получения большой площади усиления транзистор должен работать при достаточно больших токах эмиттера.

Если речь идет о полевом транзисторе, то его свойства в известной степени схожи со свойствами электронной лампы. В связи с этим произведение GB усилительного каскада на полевом транзисторе должно быть постоянным. Однако из-за значительной емкости между стоком и затвором произведение GB характеризуется такими же свойствами, как произведение GB триода.

Что такое широкополосный усилитель?

Широкополосный усилитель — это усилитель, используемый для усиления сигналов с широким спектром частот, часто сравнимым с площадью усиления применяемых активных элементов, ламп или транзисторов. Примером такого сигнала может быть сигнал изображения, действующий в телевизионных схемах, спектр которого охватывает частоты от нескольких герц примерно до 6 МГц, или последовательность коротких импульсов с малым временем фронта.

48
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело