Выбери любимый жанр

До предела чисел. Эйлер. Математический анализ - Коллектив авторов - Страница 12


Перейти на страницу:
Изменить размер шрифта:

12

ГРАФЫ

Граф — это рисунок в виде сети, состоящий из двух элементов: точек, называемых узлами или вершинами, и связей между ними — дуг или ребер. Степень узла — это количество исходящих из него дуг. Путь, по которому идет пешеход, будет называться эйлеровым, если он проходит по одному разу по каждой дуге. Если же маршрут начинается и заканчивается в одном и том же узле, то мы имеем дело с эйлеровым циклом (рисунок 3). Из-за особенностей этого цикла его называют идеальным путем.

Рассуждения Эйлера можно записать таким образом.

Обозначим через п количество узлов четной степени.

а) Если n = 0, то в графе содержится хотя бы один эйлеров цикл.

б) Если n = 2, то в графе содержится хотя бы один эйлеров путь, но ни одного цикла.

в) Если n > 2, то в графе нет ни пути, ни цикла.

До предела чисел. Эйлер. Математический анализ - _25.jpg

РИС. 1

До предела чисел. Эйлер. Математический анализ - _26.jpg

РИС . 2

До предела чисел. Эйлер. Математический анализ - _27.jpg

РИС. 3

В задаче о мостах Кенигсберга необходимо было найти эйлеров цикл. Он начинается и заканчивается водной и той же точке, проходя всего один раз по всем дугам или ребрам графа, который в данном случае имеет форму октаэдра.

Поскольку в данном случае 4, то жители Кенигсберга остались без идеального пути. Если бы они спросили совета у Эйлера, он ответил бы, что задачу можно решить, добавив или убрав один мост.

СВЯЗАННАЯ ЗАДАЧА: ХОД КОНЯ

Еще один вопрос, занимавший Эйлера и связанный с графами, — задача о ходе коня в шахматах. Ученый разобрал ее в 1759 году в работе Solution d’une question curieuse que ne soumise a aucune analyse ("Решение одного любопытного вопроса, который, кажется, не подчиняется никакому исследованию"). Задача состоит в поиске маршрута, при котором конь пройдет по всем клеткам, независимо от начальной позиции. Эйлер нашел решение и попутно заложил основу того, что впоследствии было названо гамильтоновыми графами — путями, проходящими по одному разу через все узлы и возвращающимися к исходной точке (рисунок 4).

До предела чисел. Эйлер. Математический анализ - _28.jpg

РИС. 4

РОЖДЕНИЕ ТОПОЛОГИИ

Эйлер называл все задачи, связанные с задачей о мостах, geometriam situs, а термин "топология", использующийся до сих пор, ввел в 1847 году Иоганн Бенедикт Листинг (1808-1882). Сейчас топология — развитая область математики, объединяющая понятия, которые обычно считаются не совсем геометрическими: внутри и снаружи, близко и далеко, ориентируемое и нео- риентируемое, связанное и несвязанное, непрерывное и разрывное. Топология занимается вопросами, на первый взгляд далекими от традиционной математики. Таким образом, в рамках этой дисциплины были найдены решения самых разных задач, таких как поиск минимального количества цветов, необходимого для раскрашивания любой произвольной карты (их нужно четыре). Было также найдено строгое доказательство того, что на Земле всегда существуют диаметрально противоположные точки с одинаковым давлением и одинаковой температурой или что если уменьшить листок бумаги, а потом положить на него исходный лист, то всегда будет точка первого, которая коснется соответствующей точки второго. В этой же области была сформулирована задача о причесывании ежа, в которой понятие направления рассматривается с типично топологической точки зрения. Эйлер не просто попытался объяснить существующую Вселенную — он открыл двери в миры, до той поры неизвестные.

ТЕОРЕМА О ПРИЧЕСЫВАНИИ ЕЖА

Представим себе сферу, из каждой точки которой растет волос. Затем рассмотрим проекции на поле, касательном к шару в точке, из которой растет волос. Совокупность этих проекций похожа на поле векторов, касающееся шара, то, что называется касательным полем. Наша цель — "причесать" волосы, приглаживая их к шару, но так, чтобы движение было непрерывным, то есть без пробора. Ни один волос не может вдруг поменять направление по отношению к другим. По этой теореме, невозможно причесать волосы, не сделав хотя бы одного пробора на шаре. В любом случае получится или завихрение, или залысина. Достаточно обратиться к повседневной окружающей нас реальности, чтобы убедиться в правильности теоремы: если мы попробуем причесать ребенка, не делая пробор, где-то все равно образуется завихрение.

До предела чисел. Эйлер. Математический анализ - _29.jpg

Затылок с типичным завихрением волос.

ПЕРВЫЕ КНИГИ ЭЙЛЕРА

В России Эйлер написал свои первые трактаты. Несмотря на большой объем, они легко читаются и в них уже прослеживаются стиль и превосходная структура, которые были отличительной чертой ученого: его книги славились ясностью изложения и доставляли немало удовольствия во время чтения. К этому времени относится работа Mechanica sive motus scientia analytice exposita ("Механика, или наука о движении, в аналитическом изложении"), в которой развиваются физикомеханические аспекты точечной массы. Инновация Эйлера состоит в том, что он делает это с помощью дифференциального и интегрального исчисления, тогда как механика обычно рассматривалась с синтетической и геометрической точки зрения. В этой работе уже появляются дифференциальные уравнения, точечные массы, движение упругих тел и жидкости, поэтому она может считаться первым современным трактатом по рациональной механике. Лагранж назвал ее "первой большой работой, в которой анализ применяется к наукам о движении". Эйлер также посвятил один из трактатов музыке — Tentamen novae theoriae musicae ("Опыт новой теории музыки"), написанный в 1731 году, но опубликованный только в 1739-м. В нем, как и в других сочинениях того же периода, принадлежащих Мерсенну, Декарту или Д’Аламберу, говорится о природе, происхождении и восприятии звука, об удовольствии, вызываемом музыкой, и о математической теории темпераментов. Scientia navalis ("Корабельная наука") стала первой большой работой Эйлера, посвященной кораблестроению, в которой рассказывается о принципах гидростатики, устойчивости кораблей и практических сведениях по кораблестроению и навигации. Он также написал эссе и статьи о кораблях и навигации, в которых рассматривал альтернативные способы движения: от вечного двигателя до использования энергии волн. Самым интересным из них было применение системы лопастей, предшественницы гребных колес. В 1773 году, как мы увидим, ученый вернулся к этой теме.

В последние годы своего пребывания в России Эйлер выполнял множество обязанностей в Академии. Он занимался вопросами садоводства, инженерным делом, работал над собственными книгами и руководил написанием других. Ученый входил в Комиссию мер и весов, сам вызвался аннотировать манускрипты о квадратуре круга, приходившие в академию, и закупать карандаши и бумагу. Самым трудоемким его занятием была ревизия русской картографии, которой, однако, Эйлер восхищался.

Разносторонняя и обширная профессиональная деятельность не мешала Эйлеру обращать внимание на деликатную политическую ситуацию в стране. В 1739 году закончилась русско-турецкая война, и местная знать была недовольна слишком большим количеством немцев на самых высоких государственных и административных постах. Когда в 1740 году на престол взошла Елизавета, дочь Петра I, Эйлер, испугавшись жестоких гонений на элиту немецкого происхождения и на всех иностранцев вообще, принял предложение о работе в Прусской академии наук и уехал в Берлин.

12
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело