Выбери любимый жанр

Космические рубежи теории относительности - Кауфман Уильям - Страница 16


Перейти на страницу:
Изменить размер шрифта:

16

Чтобы понять, как делается такое обобщение, рассмотрим в пространстве-времени мировую линию наблюдателя, претерпевающего кратковременное ускорение. Такая линия изображена на рис. 4.17. Мы без труда нарисуем сетку пространственно-временных координат нашего наблюдателя и после короткого периода ускорения. Если наблюдатель сначала покоится на диаграмме пространства-времени, то эта сетка будет совпадать с нашей собственной. Однако после периода ускорения наблюдатель движется по отношению к нам с некоторой скоростью. Согласно преобразованию Лоренца, обсужденному в предыдущей главе, пространственно-временная сетка движущегося наблюдателя будет казаться нам слегка скошенной, как это показано на рис. 4.17. Но там, где две сетки перекрываются, их согласовать будет невозможно.

Космические рубежи теории относительности - _60.jpg

РИС. 4.17. Недостаточность плоского пространства-времени для описания тяготения. При рассмотрении объектов, движущихся с ускорением, невозможно покрыть всё пространство-время единой сеткой координат.

Поскольку гравитацию можно рассматривать как эквивалент ускорения в удалённой от всех тел области космоса, мировую линию тела, падающего в поле тяготения, можно представить как бесконечно большое число очень слабо ускоренных движений, непрерывно следующих друг за другом. До и после каждого из таких периодов бесконечно малых ускорений можно строить пространственно-временные сетки. В результате окажется, что перед нами - бесконечное число областей с перекрытиями по всей диаграмме пространства-времени.

Причины этой трудности в том, что частная теория относительности ограничивается плоским пространством-временем. Области с перекрытиями возникают именно вследствие чересчур строгого применения понятия «плоское пространство-время в каждой точке и в каждый момент времени». Однако, если допустить, что пространство-время искривлено, эти трудности пропадут.

Но что такое искривлённое пространство-время? Чтобы ответить на этот вопрос, нужно сначала чётко выяснить смысл терминов «плоский» и «искривлённый». Для удобства, как это часто используется в теории относительности, ограничимся анализом двумерного случая. Если мы проведем анализ правильно, то его результаты можно будет распространить на все три измерения. Иными словами, если нам станет ясно, что понимается под утверждениями: «пол в комнате плоский», «поверхность баскетбольного мяча искривлена», то это послужит ключом к пониманию искривлённого пространства-времени.

Представьте себе плоскую поверхность типа изображенной на рис. 4.18. Пусть из какой-то одной её точки разбегается множество муравьев. Если каждый из них проползет по наикратчайшей линии одно и то же расстояние r от общей исходной точки и остановится, то в результате все муравьи расположатся на окружности с центром в исходной точке. Длина такой окружности равна 2πr. Итак, полная длина кривой, вдоль которой разместятся в конце своего пути муравьи, будет равна 2πr.

Космические рубежи теории относительности - _61.jpg

РИС. 4.18. Муравьи на плоской поверхности. Каждый муравей проходит одно и то же расстояние r от одной и той же точки по кратчайшему возможному пути. Концы путей лежат на окружности, длина которой составляет 2πr.

Космические рубежи теории относительности - _62.jpg

РИС. 4.19. Муравьи на искривлённой поверхности. Каждый муравей проходит одно и то же расстояние r от одной и той же точки по кратчайшему возможному пути. Концы путей лежат теперь на кривой, уже не являющейся окружностью.

Пусть теперь муравьи сделают то же самое на поверхности, не являющейся плоской (рис. 4.19). Как и прежде, каждый из них проползет от общей исходной точки одинаковое расстояние r по кратчайшему из возможных путей. Вообще говоря, в итоге муравьи уже не расположатся строго по окружности - огибающая их строй кривая будет выглядеть как деформированная окружность и полная длина получившейся замкнутой кривой уже не будет равна 2πr.

Мерой кривизны пространства является отклонение полной длины «деформированной» окружности (т.е. длины замкнутой кривой, проходящей через всех муравьев к концу их путешествия) от величины 2πr. Если длина этой кривой меньше 2πr, то говорят, что кривизна поверхности положительна. Примером поверхности положительной кривизны является баскетбольный мяч. Если длина кривой больше 2πr, то говорят, что кривизна поверхности отрицательна. И лишь если длина кривой в точности равна 2πr, то соответствующая поверхность называется плоской: её кривизна равна нулю. Примером поверхности отрицательной кривизны является поверхность седла.

Кривизна поверхности может меняться от точки к точке. Поверхность может быть в одной своей части плоской, а в других обладать положительной или отрицательной кривизной. Чтобы исследовать поверхности переменной кривизны, математики дрессируют своё муравьиное войско так, чтобы муравьи уходили от исходной точки лишь на очень малое расстояние. Тогда у математиков появляется возможность измерять кривизну поверхности в разных её местах.

Этот способ определения кривизны можно распространить на пространства большего числа измерений. Чтобы понять, как это можно сделать, вспомните, что на двумерной поверхности (или в 2-пространстве) муравьи разбежались во всех возможных направлениях от одной исходной точки по данной поверхности. В конце своего путешествия они выстроились по кривой, напоминающей окружность. В трёхмерном пространстве (3-пространстве) муравьи вновь разбегаются от общей исходной точки во всех возможных направлениях в данном пространстве. В конце своего путешествия они выстроятся по замкнутой поверхности, напоминающей поверхность сферы. Кривизна 3-пространства определяется отклонением площади поверхности получившейся деформированной сферы от величины 4πr2 - площади поверхности сферы в плоском пространстве. Аналогично в четырёхмерном пространстве (4-пространстве) муравьи разбегаются от общей исходной точки во всех возможных направлениях. В конце своего путешествия они выстроятся по «поверхности», которую можно назвать гиперсферой. Кривизна такого 4-пространства может быть найдена из сравнения величины трёхмерной «поверхности» гиперсферы с аналогичной величиной для случая плоского 4-пространства.

В XIX в. такие математики, как Бернгард Риман, Эльвин Бруно Кристоффель и Грегорио Риччи, разработали полную теорию искривлённых пространств произвольного числа измерений. Результатом их трудов была новая область математики, именуемая тензорным анализом, который оперирует новыми математическими величинами -тензорами. Математическая величина Rαβγδ - тензор кривизны Римана - содержит всю информацию об искривлённом пространстве соответствующего (произвольного) числа измерений. Из тензора кривизны Римана можно построить другую математическую величину - тензор Риччи Rαβ который сохраняет значительную часть той же информации. Именно это искал Эйнштейн!

Представление о тяготении как о силе можно преодолеть, воспользовавшись понятием локального ускорения. Трудность применения частной теории относительности к локально ускоренным ячейкам пространства - маленьким «комнаткам», взятым вместе, - можно преодолеть, если допустить, что пространство-время искривлено. Так мы подходим к удивительной гармонии -появляется мысль, что гравитационное поле любого тела нужно рассматривать как искажение геометрии пространства и времени. Эта идея - основа общей теории относительности.

В порыве вдохновения Эйнштейн понял, что гравитационное поле, окружающее объект, можно описать как кривизну пространства-времени, для которой тензор Риччи равен нулю. Уравнение Rαβ = 0 указывает, насколько пространство-время искривлено гравитационным полем тела. Это простое соотношение называют поэтому уравнениями тяготения в пустом пространстве. Решая эти уравнения, можно определить геометрию пространства-времени около Земли или около Солнца. Однако внутри Земли, как и внутри Солнца, пространство уже не пустое. Чтобы описать искривление пространства-времени в присутствии вещества, Эйнштейн вывел другую систему уравнений гравитационного поля. Из тензора Риччи можно непосредственно получить новую величину - тензор Эйнштейна Gαβ - В общем случае уравнения Эйнштейна для поля тяготения обычно записываются так: в левой части стоят математические величины (компоненты тензора Эйнштейна Gαβ), относящиеся только к геометрии пространства-времени, а в правой - математические величины (компоненты тензора энергии-импульса натяжений Tαβ), относящиеся только к физическим свойствам вещества (и полей), которые являются источниками гравитационного поля (рис. 4.20). Записав таким образом уравнения Эйнштейна, мы устанавливаем в сущности эквивалентность геометрии и распределения материи. Фундаментальным содержанием уравнений поля оказывается утверждение: геометрия пространства-времени указывает материи, какие свойства она должна иметь; одновременно материя указывает пространству-времени, как оно должно быть искривлено.

16
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело