Выбери любимый жанр

Планеты и жизнь - Мухин Лев Михайлович - Страница 20


Перейти на страницу:
Изменить размер шрифта:

20

В 1889 году вещество, выделенное Мишером, было предложено называть нуклеиновой кислотой. Следует заметить, что Мишер нашел это соединение, изучая клеточное ядро, и, помимо получения нуклеина, что само по себе является эпохальным открытием, Мишер предположил, что именно нуклеин является генетически активным материалом. К сожалению, это осталось в то время незамеченным.

После открытия Мишера началось интенсивное исследование химии нуклеиновых кислот, но только через восемьдесят лет всем стала очевидна центральная роль, которую нуклеиновые кислоты играют в управлении клеточными процессами. Это, бесспорно, некая ирония судьбы, поскольку Мишер обнаружил нуклеин именно при попытке раскрыть химическую природу клеточного ядра.

В 1910 году было установлено, что нуклеиновые кислоты содержат в своем составе сахар, а вскоре после этого было высказано предположение, что сахар и азотистое основание (например, упоминавшийся выше аденин) объединены в общий комплекс. Этот комплекс, в свою очередь, соединен с фосфорнокислым остатком.

Углевод вместе с азотистым основанием назвали нуклеозидом, а нуклеозид вместе с фосфатной группой - нуклеотидом.

Нуклеиновые кислоты являются полимерами нуклеотидов - полинуклеотидами. В нуклеиновых кислотах используется, как правило, пять оснований - аденин, гуанин, цитозин, тимин и урацил.

К 1930 году стало ясно, что существует два типа нуклеиновых кислот, отличающихся молекулой сахара и составом азотистых оснований. Впоследствии они получили название рибонуклеиновой кислоты (РНК) и дезоксирибонуклеиновой кислоты (ДНК). В построении молекулы ДНК участвуют четыре азотистых основания - аденин, гуанин, тимин и цитозин. В РНК вместо тимина - урацил. Есть и отличие в пентозах: в состав РНК входит рибоза, а ДНК - дезоксирибоза. Ученым, занимающимся предбиологической химией, сто лет спустя после открытия Мишера удалось синтезировать нуклеозиды, нуклеотиды и их полимеры. Но полученное в лаборатории драматически отличалось от того, что делает живая клетка.

Структура клеточных нуклеиновых кислот идеальна.

Это законченное молекулярное архитектурное сооружение. Нуклеиновые кислоты - полимеры нуклеотидов, и в клетке нуклеотиды соединяются между собой всегда по одному и тому же правилу. Мы помним, что пентозы пятиуглеродные циклические сахара. Так вот, в нуклеиновых кислотах связь между нуклеотидами осуществляется через фосфатную группу, которая соединяет совершенно определенный атом углерода в пентозе одного нуклеотида с другим всегда одним и тем же (из пяти возможных) атомом углерода в пентозе другого нуклеотида. А в колбе получается хаос. Эта та же ситуация, которая случается с ребенком, когда он впервые открывает игрушку-конструктор. Чтобы построить что-нибудь стоящее, необходимо прикладывать одну деталь к другой определенным образом. Природа умеет это делать, а химики пока нет.

Кроме того, клетка способна создавать информацию.

И это главное.

Глава VII

КЛЕТКИ РАБОТАЮТ

Существует очень простой факт, хорошо известный биологам. Он заключается в следующем. Для создания" а точнее, для биологического синтеза своих компонентов клетка должна получить из окружающей среды не только строительный материал, но и энергию. Когда клетка питается, например, глюкозой, она окисляет ее до углекислого газа и воды. В результате распада глюкозы выделяется энергия, которую клетка использует для всех своих нужд, в частности, для построения самых различных молекул, На примере процесса брожения посмотрим, как происходит распад глюкозы в живом организме. Этот процесс был известен еще во времена неолита, когда древние люди научились превращать виноградный сок в вино, Египтяне приписывали изобретение виноделия богу Озирису, а библейские сказания связывают это великое открытие с именем Ноя. Древние греки также видели здесь руку богов и прославляли Дионисия. Римляне - Вакха. Но природу брожения, так же как и природу многих физических явлений, удалось объяснить лишь в XIX веке. Сделал это французский физик Гей-Люссак.

Он установил, что в процессе брожения из глюкозы получается этиловый спирт и углекислый газ. При этом высвобождается энергия, которую клетка запасает в фосфатных связях упоминавшихся уже молекул аденозинтрофосфорной кислоты (АТФ). Для полной реализации всего процесса необходимо около двух тысяч химических реакций, которые и происходят во время брожения, причем с невероятной точностью.

Люди, я имею в виду не организм, а общество, получают необходимую энергию главным образом за счет распада химических связей, заключенных в горючих материалах: угле, нефти, дереве и так далее. Хорошо известно, что из-за легкомысленного отношения к природным ресурсам и низкого коэффициента полезного действия процессов сжигания топлива человечеству грозит глобальный энергетический кризис. Клетка же получает более 50 процентов всей освободившейся при окислении энергии в форме энергии фосфатных связей АТФ. Для сравнения скажем, что в технике редко удается превратить в механическую или электрическую энергию более трети тепловой энергии, Освобождающейся при сгорании.

Заметим, что клетке приходится добывать и использовать энергию в условиях практически постоянной и сравнительно низкой температуры. На протяжении миллиардов лет эволюции органического мира клетка приспособила свои удивительные молекулярные механизмы для эффективной работы в этих мягких условиях.

Биологи делят все живое на Земле в зависимости от способа питания на две основные группы.

Организмы, например, люди и животные, которые питаются сложными органическими соединениями, называются гетеротрофами. Им необходим постоянный приток горючего сложного химического состава (углеводы, белки, жиры). Гетеротрофные организмы получают энергию, окисляя эти сложные вещества. Запасенная энергия используется практически для всех нужд организма.

При этом, как установил еще Гей-Люссак, в атмосферу выделяется двуокись углерода.

Вторая группа организмов называется автотрофами.

Их подавляющее большинство, так как все зеленые растения на суше и в океане - автотрофы.

Клетки автотрофных организмов умеют делать две вещи. Они, во-первых, аккумулируют (опять же в форме фосфатных связей АТФ) энергию солнечного света, используя ее для своих целей. А во-вторых, добывают углерод для построения глюкозы из углекислого газа Из глюкозы они создают более сложные молекулы, и поэтому все живое на Земле в конечном счете получает энергию от Солнца, причем растительные клетки берут эту энергию непосредственно, а животные - косвенным, но простым путем, поедая растения или других животных.

Фотосинтез, а именно так называется процесс, характерный только для растительного царства, происходит в клеточных органеллах - хлоропластах. Эффективность этого миниатюрного цеха нашей молекулярной фабрикиклетки необычайна. В лабораторных условиях удалось превратить 75 процентов энергии солнечного света в энергию фосфатных связей АТФ. Энергетические установки клетки по своей эффективности оставляют далеко позади не только классическую энергетику, но и самые последние достижения атомной.

Сбалансированность всех химических и энергетических процессов в клетке не может не вызвать восхищения. Электроника достигла впечатляющих успехов в создании микросхем и миниатюрных ЭВМ. Но все это не идет ни в какое сравнение с миниатюризацией механизмов превращения энергии в органическом мире.

А сейчас, прежде чем перейти к обсуждению наиболее интригующих событий и процессов, происходящих в живой клетке, полезно будет подвести некоторые итоги экспериментов в области предбиологической химии.

За последние годы появилось много работ, в которых продемонстрирована возможность образования из различных полимеров обособленных структурных единиц, обладающих некоторыми свойствами живого. Эти маленькие сферические частицы можно в известном смысле рассматривать как предшественников бактериальных клеток.

Здесь в первую очередь нужно указать на исследования коацерватных капель школы А. Опарина и работы американского биохимика С. Фокса по протеиноидным микросферам.

20
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело