Выбери любимый жанр

Революция в физике - де Бройль Луи - Страница 30


Перейти на страницу:
Изменить размер шрифта:

30

Действительно, результаты опытов, поставленных Франком и Герцем, не только подтвердили существование энергетических уровней, но и оказались также в хорошем соответствии с данными о расположении этих уровней в различных атомах, полученными на основании спектроскопических измерений.

5. Критика теории Бора

Того, что было сказано в этой главе, вполне достаточно, чтобы понять все значение атомной теории Бора. Рождение ее ознаменовало новый важный этап в развитии современной физики. Уже с самого начала теория позволила понять природу атомных спектров и объяснить в общих чертах законы, которым они подчиняются. Дополненная затем общими правилами квантования, она приняла в каком-то смысле законченный вид и оказалась способной объяснить большое число новых явлений атомного мира.

Тем не менее, эта теория все же обладала некоторыми недостатками. Мы не собираемся говорить здесь о тех неудачах, которые постигли ее, например, при попытке Зоммерфельда объяснить наблюдаемую экспериментально тонкую структуру спектров или о противоречии с опытом, к которому после долгих вычислений пришел Крамерс, когда он хотел применить методы старой квантовой теории, чтобы теоретически определить потенциал ионизации нейтрального атома гелия. Хотя эти неудачи и не предвещали ничего хорошего, но речь пойдет не о них. Первоначальные концепции Бора встречают возражения гораздо более общего характера, свидетельствующие о неудовлетворительности старой квантовой теории. Остановимся в нескольких словах на наиболее существенных из этих возражений.

Прежде всего, теория Бора оказалась совершенно неспособной окончательно уточнить природу излучения, возникающего при переходах внутриатомных электронов из одного стационарного состояния в другое. Разумеется, она позволяет определить частоту излучения. Однако для полного описания процесса этого еще недостаточно. Необходимо знать также интенсивность излучения и его поляризацию. Но на эти вопросы теория Бора не дает никакого ответа. И в этом смысле она оказывается гораздо более несовершенной, чем классическая теория излучения. Бор отлично сознавал этот недостаток своей теории и попытался устранить его, предложив в 1916 г. известный принцип соответствия.

Но даже помимо этого у теории Бора есть еще слабые места. В частности, в ней одновременно используются чисто классические понятия и формулы и квантовые. Так, например, вначале внутриатомные электроны рассматриваются как материальные точки (как они понимаются классической механикой), движущиеся под действием кулоновых сил по вполне определенным орбитам, а атом представляется в виде миниатюрной солнечной системы чрезвычайно малых размеров. Затем в эту чисто классическую схему извне вводятся совершенно чуждые ей условия квантования и утверждается, что среди бесконечного многообразия различных траекторий, не противоречащих уравнениям классической динамики, устойчивы и физически реализуются лишь те из них, которые удовлетворяют условиям квантования.

Следовательно, изменение состояния атома может произойти лишь в результате внезапного перехода, сопровождаемого потерей энергии и излучением, описать который в рамках чисто классических представлений оказывается невозможно. В промежутках же между этими переходами атом находится в устойчивом состоянии, иначе говоря, в одном из стационарных состояний, где он как бы совершенно ничего не знает о существовании внешнего мира, ибо в противном случае по законам электродинамики он должен был бы непрерывно терять энергию на излучение электромагнитных волн. Все это уже никак не согласуется с классическими концепциями, служившими в определенной степени отправной точкой теории Бора. И очевидно, что подобную теорию, принимающую за основу совокупность определенных понятий, а в дальнейшем их начисто отвергающую, никак нельзя считать вполне удовлетворительной и внутренне непротиворечивой.

И наконец, вся эта динамическая картина, которая вначале была введена, все эти точечные электроны, описывающие некоторые траектории, в каждой точке которых они обладают вполне определенными значениями координат и скорости, оказались нужны лишь для вычисления энергии стационарных состояний и соответствующих спектральных термов. Причем только они могут быть сравнены с экспериментальными данными, полученными из спектроскопических измерений и опытов по ударной ионизации.

Не попытаться ли представить себе, что это описание, слишком подробное и искусственное, эти формы орбит и значения координат и скоростей электронов не соответствуют никакой физической реальности и только энергия стационарных состояний, которую в конце концов дает нам вся эта квантовая небесная механика, имеет реальный физический смысл?

Как это часто бывает, сам гениальный создатель квантовой теории атома первый заметил и подчеркнул слабости предложенной им теории. Он первый указал на искусственность планетарной модели, на своеобразие и новизну понятий стационарных состояний и переходов из одного состояния в другое и на невозможность последовательного введения этих понятий в обычных рамках пространства и времени и, наконец, на необходимость поисков новых путей, кардинально отличных от прежних. Его принцип соответствия указывал на одно из таких новых направлений. А несколько лет спустя один из учеников Бора, Вернер Гейзенберг, следуя идеям своего учителя, создал новую замечательную теорию квантов – квантовую механику.

Глава VII. Принцип соответствия

1. Трудность согласования квантовой теории и теории излучения

Электромагнитная теория, дополненная теорией электронов Лоренца, дает совершенно ясную и точную картину излучения, испускаемого системой движущихся зарядов. Если заданы структура и закон движения системы электрических зарядов, то можно точно вычислить частоты, интенсивности и поляризацию излучения. Для этого поступают следующим образом. Во-первых, в прямоугольной системе координат вычисляют компоненты вектора электрического момента системы, который в каждый момент времени определяется положением всех зарядов системы. Эти компоненты зависят от времени и по общим математическим теоремам о разложении в ряд или интеграл Фурье могут быть представлены в виде суммы (конечной или бесконечной), каждый член которой гармонически зависит от времени. Согласно электромагнитной теории система будет испускать излучение со всеми теми частотами, которые фигурируют в этом разложении Фурье. Кроме того, излучение одной из этих частот с электрическим вектором, параллельным одной из координатных осей, имеет интенсивность, которая определяется коэффициентом, соответствующим данной частоте в разложении Фурье, той компоненты электрического момента, которая параллельна рассматриваемой оси.

Этого достаточно, чтобы определить частоту, интенсивность и поляризацию излучения, испускаемого рассматриваемой системой.

Если электромагнитная теория Лоренца действительно применима к элементарным частицам электричества, то она должна позволить однозначно определить излучение, испускаемое атомом Резерфорда – Бора. Но, как мы уже видели, эта теория приводит к совершенно неправильным выводам. Действительно, поскольку атом должен все время терять энергию на излучение, электроны очень быстро упадут на ядро, а частота излучения будет непрерывно изменяться. Но тогда атом был бы нестабильным, и спектральные линии строго определенной частоты не могли бы существовать – абсурдный вывод.

Чтобы обойти эту основную трудность, Бор сделал предположение, что в стационарных состояниях атом не излучает. Это равносильно утверждению, что электромагнитную теорию излучения нельзя применять к электронам, движущимся по стабильным орбитам.

Порвав таким образом с электромагнитной теорией, квантовая теория атома оказалась совершенно не в состоянии объяснить свойства спектров излучения. Мы видели, каким образом Бору с помощью допущения, что каждый переход между квантовыми состояниями сопровождается испусканием кванта энергии излучения, удалось решить вопрос о частотах. Но это правило частот далеко не полностью описывает испускаемое излучение, оно ничего не говорит об интенсивности и поляризации. В 1916 г. Бор сумел отчасти восполнить этот недостаток, следуя очень странным и даже несколько непоследовательным путем. Этот путь состоял по существу в следующем: несмотря на неприменимость электромагнитной теории к внутриатомным явлениям, надо попытаться тем не менее установить определенное соответствие между квантовыми явлениями и формулами электродинамики с тем, чтобы понять, почему классическая электромагнитная теория дает прекрасное описание явлений большого масштаба. Таким образом, Бору удалось сформулировать удивительный принцип соответствия, сыгравший важную и благотворную роль в развитии квантовой теории.

30
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело