Революция в физике - де Бройль Луи - Страница 35
- Предыдущая
- 35/56
- Следующая
Избежать этого можно, лишь получив уравнение распространения волны, связанной с электроном, и решив задачу о собственных значениях для волн внутри атома, которая при этом возникает.
Однако необходимо особо подчеркнуть главную идею, содержащуюся в предыдущем рассуждении. Эта важная идея заключается в следующем: так как геометрическая оптика есть только приближение, верное в определенных условиях, и соответствие установлено между классической динамикой и распространением волн по законам геометрической оптики, то вполне возможно, что классическая динамика тоже лишь приближение, имеющее те же пределы применимости, что и геометрическая оптика, перефразировкой которой она, в известном смысле, является.
Во всех случаях, когда волна, связанная с частицей, распространяется не по законам геометрической оптики (а мы уже видели, что это бывает как раз в случае волн, связанных с электронами в квантованных атомных системах), динамическое поведение частицы нельзя описывать, исходя из понятий и законов классической механики. Именно поэтому механику Ньютона и даже механику Эйнштейна нужно впредь называть старой механикой, и необходимо создать новую, в рамках которой эта старая будет первым приближением, справедливым в определенных условиях. Короче говоря, возникла необходимость, как мы писали в те годы, создать новую механику волнового характера, которая будет относиться к старой механике, как волновая оптика к геометрической оптике. Точно и тщательно эта идея была осуществлена в бессмертной работе Шредингера.
В чем же заключается вторая трудность? Прежде чем перейти к существу дела, рассмотрим в качестве простого примера систему, в которой возникают стационарные волны, – струну с закрепленными концами. В такой струне может возбуждаться бесконечное число стоячих волн. Случай, когда струна несет только одно стационарное колебание, т е. когда она движется строго по синусоиде, исключительный. Обычно струна после нескольких начальных колебаний начинает двигаться по очень сложному закону за исключением ее концов, которые, естественно, не двигаются вообще. Однако математическая теория рядов Фурье гласит, что движение струны, каким бы сложным оно ни было, может быть представлено в виде суммы стационарных колебаний. Математически этот результат выражают следующим образом: синусоидальные функции, описывающие отдельные стационарные волны, образуют полную систему ортогональных функций. Этот результат можно обобщить на случай систем более сложных, чем струна с закрепленными концами. Можно показать, что если в какой-либо области пространства возникают стационарные колебания, то, какова бы ни была их форма, ее можно представить в виде суперпозиции некоторого числа (конечного или бесконечного) стационарных колебаний.
Применение этих общих идей к квантованным атомным системам сразу же приводит к упомянутой трудности. По первоначальным представлениям Бора атом всегда находится в том или ином стационарном состоянии. При этом предполагается дискретность, как раз и означающая квантование. Такой взгляд ни в чем не противоречит классической картине состояния атома. Однако если предположить, что стационарное состояние соответствует стационарным колебаниям, то общая теория, которую мы только что бегло описали, приводит к такому выводу: состояние атома в данный момент времени может свестись к единственному стационарному состоянию только в исключительных случаях. В общем же случае оно представляет собой наложение определенного числа стационарных состояний. Можно сказать, что с точки зрения классических представлений такое утверждение лишено всякого смысла, ибо невозможно себе представить, что атом может в один и тот же момент времени находиться в нескольких состояниях. Эта трудность показывает, что развитие новой механики претендует на глубокую перестройку основных понятий классической физики, перестройку, необходимость которой, как мы уже говорили, в зародыше содержится уже в самом существовании кванта действия. И только вероятностная интерпретация новой механики позволит нам скоро придать суперпозиции нескольких состояний физический смысл.
3. Работы Шредингера
Эрвину Шредингеру в его великолепной статье, увидевшей свет в 1926 г., выпала честь первому написать в явном виде волновое уравнение волновой механики и вывести из него строгий метод решения квантовых задач. Чтобы получить уравнение для волн, связанных с частицей, можно исходить из идеи о том, что с точки зрения новой теории старая механика эквивалентна приближению геометрической оптики. В теории Якоби траектории частиц рассматриваются как световые лучи, которые соответствуют поверхности, определяемой полным интегралом уравнения первого порядка второй степени в частных производных, названного уравнением Якоби. Мы уже отмечали (см. гл. II п. 2), что уравнение Якоби по форме совершенно аналогично основному уравнению геометрической оптики и что именно это обстоятельство – причина аналогии между теорией Якоби и теорией распространения волн в ее геометрическом приближении. Поэтому волновое уравнение волновой механики нужно записать таким образом, чтобы соответствующее уравнение геометрической оптики, справедливое в условиях, которые мы уже уточнили, совпадало с уравнением Якоби. Чтобы получить уравнение распространения, удовлетворяющее этому условию, Шредингер проделал следующее: прежде всего он установил соотношение, которое для данной задачи в классической механике давало бы энергию как функцию координат частицы и компонент ее импульса. Далее в этом выражении, которое носит в механике название гамильтониана, каждая компонента импульса в декартовой системе координат заменялась символом производной по соответствующей координате, умноженной на константу, пропорциональную постоянной Планка. Таким образом, гамильтониан был превращен в некий оператор, оператор Гамильтона. Теперь достаточно было применить этот оператор к волновой функции системы (которая обычно обозначается греческой буквой «КСИ») и приравнять полученный результат производной волновой функции по времени, умноженной на упомянутую константу.
Полученное таким образом уравнение можно принять в качестве волнового уравнения частицы, ибо в приближении геометрической оптики оно сводится к уравнению Якоби, которое можно написать для рассматриваемой задачи в классической механике.
Здесь следует сделать несколько замечаний по поводу полученного таким способом уравнения распространения связанных с частицей волн. Во-первых, это уравнение определяет волновую функцию как функцию скалярную, а не векторную. Это приводит к существенному различию между волной, связанной с частицей, и световой волной. Правда, известно, что волновая теория света также вначале исходила из того, что световые колебания описываются скалярной функцией. Такая точка зрения и сегодня может объяснить многие явления дифракции и интерференции. И только лишь при рассмотрении поляризации нужно учитывать векторный характер волновой функции. Итак, можно предположить, что в один прекрасный день скалярная волновая функция будет заменена волновой функцией нескольких компонент при соответствующем обобщении теории. Ниже мы покажем, что это предсказание подтвердилось рождением теории электрона Дирака. Как мы увидим, эта теория не одинакова для случаев электрона и фотона.
Следует сделать еще одно замечание по поводу уравнения распространения волн. Дело в том, что оно комплексно, т е. его коэффициенты не являются действительными числами, в них фигурирует величина (корень из –1). Это обстоятельство, на первый взгляд совершенно случайное, показывает, насколько трудно придать «КСИ»-волне волновой механики такой же физический смысл, какой приписывает волнам классическая физика. Действительно, в классической физике распространение волны связано с переносом свойств колеблющейся среды, существование которой либо совершенно очевидно, либо предполагается (последнее только в случае классической теории света). Они описывают действительные процессы и должны быть выражены действительными функциями. Если же, как это часто делают при описании оптических явлений, иногда полезно заменить указанные действительные функции комплексными величинами, действительной частью которых они являются, то это только вычислительный прием, без которого всегда можно обойтись.
- Предыдущая
- 35/56
- Следующая