Революция в физике - де Бройль Луи - Страница 45
- Предыдущая
- 45/56
- Следующая
4. Индетерминизм в новой механике
Уравнения классической механики целиком и полностью определяют движение системы, если в начальный момент времени известны положения и состояния движения каждой из ее частей. Таким образом, можно полностью предсказать классическое движение частицы, если известны ее положение и скорость в некоторый начальный момент времени. Эта возможность самым неумолимым образом предсказать будущее механической системы, когда имеются данные о ее состоянии в некоторый момент времени, определяет детерминизм классической механики.
Поразительные успехи, достигнутые этой механикой, особенно в области математической астрономии, привели к тому, что все физики пытались создавать теории, которые бы всегда удовлетворяли условия детерминизма. Макроскопические явления, изучавшиеся ими тогда, были подчинены этому требованию, и вся классическая теоретическая физика покоится на дифференциальных уравнениях в полных или частных произведениях, которые позволяют строго вычислить эволюцию любой произвольной физической системы, исходя из определенных данных о ее начальном состоянии. Даже в тех областях физики, где были введены вычисления вероятностей, всегда предполагали, что элементарные процессы строго детерминированы и что только очень большое число и беспорядочность элементарных процессов, из которых состоят наблюдаемые явления, позволяют обратиться к статистическим методам и понятию вероятности. Более или менее сознательно внутренний детерминизм явлений природы, требующий, чтобы их можно было полностью предсказать, по крайней мере в принципе, стал чем-то вроде научной догмы. Развитие новых квантовых теорий абсолютно изменило эту ситуацию.
Можно отдать себе отчет в различии, которое возникает в этом смысле, между старой и новой механикой. Для этого заметим, что элементы, одновременное знание которых в начальный момент времени необходимо в классической механике, чтобы строго предсказать эволюцию системы, – это как раз те самые, одновременное определение которых невозможно согласно соотношениям неопределенности. Для того чтобы строго решить классические уравнения движения системы, необходимо знать расположение и состояние движения ее частей в некоторый момент времени. Поскольку любую систему можно с точки зрения современной физики, учитывая приведенные рассуждения, свести к набору частиц, то нужно знать координаты и скорости (или импульсы) различных частиц системы в один и тот же момент времени. Сущность же соотношений неопределенности заключается в том, что точное и одновременное знание этих величин невозможно. Конечно, величина постоянной h, необычно малой по сравнению с нашими обычными масштабами, делает квантовую неопределенность физических явлений обычных масштабов пренебрежимо малой и детерминизм, по-видимому, строгим. Однако при микроскопическом изучении физических явлении неопределенность уже значительна и ее достаточно, чтобы сделать совершенно невозможным описание хода событии согласно требованиям детерминизма.
Исчезнувший или, по крайней мере, сильно ослабленный детерминизм в квантовой физике заменяется вероятностными законами. Однако обращение к вероятности имеет здесь совершенно иное значение, чем, скажем, в статистической механике. В классических теориях, где появляются вероятности, считают, что элементарные процессы подчинены строгим законам. Вероятности вводились там для описания явлений крупного масштаба, включающих огромное число элементарных процессов. В квантовой физике, наоборот, вероятности прямо вводятся для описания хода элементарных процессов. Чтобы лучше понять постановку вопроса, мы должны отчетливо показать, как новая механика описывает ход элементарных процессов с помощью волн.
Для этой цели рассмотрим одну частицу. Наши рассуждения легко можно обобщить на систему частиц, воспользовавшись методом, который описывается в гл. XII.
Задача теоретической физики заключается в том, чтобы, зная результат определенного числа наблюдений или экспериментов, предсказать результат других наблюдений или предстоящих экспериментов. В классической механике предполагается, что можно одновременно измерить координату и скорость частицы, а затем с помощью уравнений классической динамики в принципе строго предсказать результаты наблюдений или измерений, которые будут проведены с этой частицей в более поздние моменты времени. Наоборот, в новой механике мы вынуждены предполагать невозможность одновременного и точного измерения координат и импульса частицы. Даже измерения, проведенные с возможной наивысшей точностью, не могут дать об этих величинах сведений, содержащих меньшую неопределенность, чем позволяют неравенства Гейзенберга. Состояние частицы, о котором мы узнаем в результате измерения, будет описываться связанной с ней волной, которая никогда не может быть одновременно локализованной и монохроматической. Она всегда обладает некоторой протяженностью либо в пространстве, либо в спектре частот, а вообще говоря, и там и тут. Так, уравнение распространения позволяет, исходя из известной в начальный момент волновой «КСИ»-функции, точно вычислить эволюцию волны за период, когда не производится никаких наблюдений или измерений.
Следовательно, оно позволяет установить в каждый момент времени вероятность получения того или иного значения какой-либо характеристики движения частицы, если в этот момент времени будет проведено соответствующее измерение. По существу каждое новое измерение дает сведения о новом состоянии частицы. Теперь уже совершенно нельзя говорить о вероятностях, ибо всякое понятие вероятности того или иного события исчезает, как только сведения об этом событии получены. Поэтому после этого нового измерения необходимо построить новую «КСИ»-волну, которая будет изображать новое состояние частицы. Снова возвращаясь к идее, изложенной в начале главы, мы можем сказать, что каждый эксперимент благодаря существованию кванта действия приводит к неконтролируемому возмущению состояния частицы, которое не позволяет установить строгую причинную связь между предыдущим и последующим состояниями.
Это возмущение связано с существованием кванта действия, ибо именно он стоит на пути неограниченного уменьшения неопределенностей, возникающих в процессе измерения. Эволюция волновой функции между двумя последовательными измерениями полностью определяется ее начальным видом и уравнением распространения: се поведение строго детерминировано. Но отсюда никоим образом не следует, что существует строгий детерминизм для наблюдаемых и измеряемых процессов. Каждое новое наблюдение и измерение добавляет новые элементы и нарушает правильную эволюцию «КСИ»-волны.
Гейзенберг привел пример применения такого рода рассуждений. Он описал два последовательных измерения положения частицы. Первое измерение позволяет локализовать частицу в небольшой области пространства. Соответствующая волна в результате этого первого измерения будет представлять собой пакет, заключенный в этой области пространства (без этого мы бы пришли в противоречие с принципом интерференции). Этот волновой пакет, который волей-неволей далек от монохроматичности, будет сам собой расплываться согласно уравнению распространения.
Второе измерение положения, проведенное в некоторый последующий момент времени, позволит локализовать частицу в новом малом объеме, который обязательно будет лежать внутри области, занятой к этому времени волновым пакетом, и который будет гораздо меньшего размера. Иными словами, в результате распространения волны область возможных положений частицы очень быстро растет, и роль второго измерения заключается в том, чтобы резко ее ограничить. После проведения второго измерения необходимо построить новый волновой пакет «КСИ», размеры которого значительно меньше размеров первого пакета в конечном состоянии. Эта новая форма «КСИ»-волны будет исходной для новой эволюции волновой функции.
Теперь мы можем понять, как представления новой квантовой физики разрушают старые требования детерминизма. По-видимому, все же существуют случаи, когда результаты измерения какой-либо характеристики можно предсказать с совершенной определенностью. Это бывает тогда, когда состояние перед измерением представляет собой чистое состояние, соответствующее этой характеристике, или, иными словами, когда разложение «КСИ»-функции по собственным функциям, соответствующим этой величине, сводится к одному единственному члену. Так будет в случае измерения энергии или импульса частицы, которой соответствует плоская монохроматическая волна. Однако эти случаи являются исключительными. Можно было бы даже сказать, что вероятность таких состояний, строго говоря, равна нулю.
- Предыдущая
- 45/56
- Следующая