Великая Теорема Ферма - Аверьянова Н. Л. "Zenzen" - Страница 1
- 1/75
- Следующая
Саймон СИНГХ
ВЕЛИКАЯ ТЕОРЕМА ФЕРМА
От издательства
Трудно найти более известное математическое утверждение, чем последняя теорема Ферма. Своей обманчивой простотой она привлекала внимание к себе на протяжении более чем 350 лет.
И вот, наконец, теорема Ферма доказана. История ее доказательства только за последние двадцать лет уже заслуживает отдельного описания: связь с гипотезой Таниямы, объявление о доказательстве Мияоки, газетная шумиха и последующее разочарование в 1993 году, и, наконец, заявления об окончательном доказательстве и публикации в 1995 году. Учитывая ажиотаж, возникший после объявления премии в 1908 году и не утихший до сих пор, трудно поверить, что в этой интригующей истории поставлена последняя точка…
И тем не менее, перед нами книга, в которой подробно прослежена вся история доказательства от появления самой проблемы на полях «Арифметики» Диофанта в 1637 году до публикаций Э. Уайлса и Р. Тейлора в 1995 году. Столь длинный временной промежуток позволил автору сообщить множество интересных и малоизвестных подробностей из истории математики.
Эта книга была опубликована в 1997 году и стала бестселлером. Ее автору удалось успешно разрешить трудную дилемму: написать подробный и интересный рассказ о доказательстве математической теоремы, практически не используя математический аппарат. Конечно же, это стало возможным только при помощи целого ряда чрезмерных упрощений. Характерной особенностью книги является и то, что она написана, как это и отражено в предисловии, по «горячим» следам событий. К сожалению, это привело к появлению некоторых неточностей, а иногда и прямых ошибок. Тем не менее, мы уверены, что публикация этой книги на русском языке вызовет большой интерес.
В заключение нам хотелось бы привести несколько ссылок. Так, оригинальные исследования Ферма можно найти в [1]. Классические результаты можно найти в [2,3]. О связи эллиптических кривых и теоремы Ферма см. [4].
В качестве первоначальных книг по теории чисел, эллиптическим функциям и модулярным формам мы рекомендуем [4,5,6,7].
1. Ферма П. Исследования по теории чисел и диофантову анализу. — М.: Наука, 1992.
2. Эдвардс Г. Последняя теорема Ферма. Генетическое введение в алгебраическую теорию чисел. — М.: Мир, 1980.
3. Постников М.М. Введение в теорию алгебраических чисел. — М.: Наука, 1982.
4. Прасолов В.В., Соловьев Ю. П. Эллиптические функции и алгебраические уравнения. — М.: Факториал, 1997.
5. Боревич 3. И., Шафаревич И. Р. Теория чисел. — М.: Наука, 1985.
6. Коблиц Н. Введение в эллиптические кривые и модулярные формы. — М.: Мир, 1988.
7. Айерланд К., Роузен М. Классическое введение в современную теорию чисел. — М.: Мир, 1987.
Предисловие
Наконец-то мы сошлись в одно и то же время, и в одном и том же месте — в зале, заполненного не до отказа, но все же настолько просторном, чтобы вместить сотрудников математического факультета Принстонского университета, где они собирались по какому-нибудь торжественному поводу. В тот день людей в зале было не так уж и много, но все же достаточно для того, чтобы я не мог с уверенностью сказать, кто из них Эндрю Уайлс. Оглядевшись, я через несколько минут обратил внимание на скромного вида человека, который, пил чай, слушал, о чем говорили стоявшие поблизости коллеги, и был явно погружен в ритуальный процесс «собирания с мыслями», которым около четырех часов дня поглощены математики во всем мире. Что же касается его, то он просто догадался, кто я.
Дело было в конце необычайно напряженной недели. Мне удалось встретиться с несколькими замечательнейшими математиками из числа ныне здравствующих, и мало-помалу я начал разбираться в их мире. Но несмотря на все усилия поймать Эндрю Уайлса, мы увидели друг друга впервые. Я хотел поговорить с ним и убедить его принять участие в документальном фильме, для передачи «Горизонт» на Би-Би-Си, о полученном им феноменальном результате. Эндрю Уайлс был тем самым человеком, который недавно во всеуслышание заявил что ему удалось найти Святой Грааль математики — доказательство Великой теоремы Ферма. Во время последовавшего затем разговора Уайлс был рассеян и держался замкнуто, и хотя он был вежлив и дружелюбен, было ясно, что ему очень хочется побыстрее отделаться от меня. Уайлс без обиняков заявил, что не может сейчас сосредоточиться ни на чем, кроме работы, которая, по его словам, находится в критической стадии, и что, возможно, позднее, когда схлынет напряжение, он с удовольствием примет участие в фильме.
Мне было известно (и он это знал), что самая честолюбивая мечта его жизни рухнула. Святой Грааль, который он уже было держал в руках, на деле оказался не более чем очень красивым, драгоценным, но все-таки обыкновенным сосудом для питья. Дело в том, что в своем доказательстве, о котором он возвестил математическому миру, Уайлс нашел ошибку.
История Великой теоремы Ферма уникальна. К тому времени, когда мне впервые довелось встретиться с Эндрю Уайлсом, я уже пришел к пониманию того, что это — поистине одна из величайших историй в сфере научной деятельности. Я видел своими глазами заголовки летом 1993 года, когда доказательство теоремы Ферма вынесло математику на передние полосы национальных газет всего мира. К тому времени у меня в голове сохранились лишь весьма смутные воспоминания о том, что такое Великая теорема Ферма, но было очевидно, что это нечто весьма и весьма особенное и что в передаче «Горизонт» ей стоит посвятить фильм. На протяжении нескольких недель я побеседовал со многими математиками: теми, кто принимал непосредственное участие в истории или хорошо знал Эндрю, и теми, кто просто испытывал восторг от сознания того, что им довелось стать свидетелями великого события в своей профессиональной области. Все щедро делились со мной своими познаниями из истории математики и терпеливо втолковывали мне суть свершившегося, хотя в обрушившихся на меня понятиях я разбирался весьма слабо. Вскоре стало ясно, что речь идет о предмете, которым во всей его полноте владеет едва ли полдюжины людей во всем мире. Какое-то время я даже стал задумываться над тем, не сошел ли я с ума, пытаясь снять фильм о решении теоремы Ферма. Но от своих собеседников я также узнал о богатой истории этой проблемы и большом значении Великой теоремы Ферма для математики и ее приложений и понял, что именно здесь и кроется подлинный сюжет фильма.
Я узнал, что своими корнями Великая теорема Ферма уходит в Древнюю Грецию и что в теории чисел она высится, подобно гималайскому пику. Я ощутил эстетическую привлекательность математики и начал ценить в ней то, что позволяет считать эту науку языком природы. Коллеги Уайлса помогли мне постичь титаничность его усилий по собиранию всех наиболее современных методов теории чисел с целью последующего использования их для доказательства Великой теоремы Ферма. От друзей Эндрю в Принстоне я услышал о тернистом пути к успеху, пройденном Эндрю за годы исследований, проведенных в одиночестве. Вокруг Эндрю Уайлса мне удалось нарисовать поистине удивительную картину и шаг за шагом сложить головоломку, доминировавшую над его жизнью, но, казалось, мне так и не суждено встретить этого человека.
Хотя Уайлс использует в своем доказательстве сложнейшие математические методы, я обнаружил, что красота Великой теоремы Ферма заключается в том, что уяснить саму проблему необычайно просто. Это — головоломка, формулируемая так, что она понятна любому школьнику. Пьер де Ферма был человеком, воспитанным в традициях Возрождения, и находившимся в самом центре повторного открытия древнегреческого знания. Но Ферма сумел поставить вопрос, который не додумались задать древние греки, и в результате он стал автором труднейшей проблемы на Земле, решать которую пришлось другим. Словно дразня потомков ложными надеждами, Ферма оставил им краткое сообщение, в котором уведомлял о том, что знает решение, но умалчивал о том, в чем именно оно состоит. Так началась гонка, которая продолжалась три столетия.
- 1/75
- Следующая