Большая Советская Энциклопедия (СИ) - Большая Советская Энциклопедия "БСЭ" - Страница 145
- Предыдущая
- 145/170
- Следующая
При определении понятия С. необходимо учитывать теснейшую взаимосвязь его с понятиями целостности, структуры, связи, элемента, отношения, подсистемы и др. Поскольку понятие С. имеет чрезвычайно широкую область применения (практически каждый объект может быть рассмотрен как С.), постольку его достаточно полное понимание предполагает построение семейства соответствующих определений — как содержательных, так и формальных. Лишь в рамках такого семейства определений удаётся выразить основные системные принципы: целостности (принципиальная несводимость свойств С. к сумме свойств составляющих её элементов и невыводимость из последних свойств целого; зависимость каждого элемента, свойства и отношения С. от его места, функций и т. д. внутри целого), структурности (возможность описания С. через установление её структуры, т. е. сети связей и отношений С.; обусловленность поведения С. поведением её отдельных элементов и свойствами её структуры), взаимозависимости С. и среды (С. формирует и проявляет свои свойства в процессе взаимодействия со средой, являясь при этом ведущим активным компонентом взаимодействия), иерархичности (каждый компонент С. в свою очередь может рассматриваться как С., а исследуемая в данном случае С. представляет собой один из компонентов более широкой С.), множественности описания каждой С. (в силу принципиальной сложности каждой С. её адекватное познание требует построения множества различных моделей, каждая из которых описывает лишь определённый аспект С.) и др.
Существенным аспектом раскрытия содержания понятия С. является выделение различных типов С. (при этом разные типы и аспекты С. — законы их строения, поведения, функционирования, развития и т. д. — описываются в соответствующих специализированных теориях систем). Предложен ряд классификаций С., использующих разные основания. В наиболее общем плане С. можно разделить на материальные и абстрактные. Первые (целостные совокупности материальных объектов) в свою очередь делятся на С. неорганической природы (физические, геологические, химические и др.) и живые С., куда входят как простейшие биологические С., так и очень сложные биологические объекты типа организма, вида, экосистемы. Особый класс материальных живых С. образуют социальные С., чрезвычайно многообразные по своим типам и формам (начиная от простейших социальных объединений и вплоть до социально-экономической структуры общества). Абстрактные С. являются продуктом человеческого мышления; они также могут быть разделены на множество различных типов (особые С. представляют собой понятия, гипотезы, теории, последовательная смена научных теорий и т. д.). К числу абстрактных С. относятся и научные знания о С. разного типа, как они формулируются в общей теории С., специальных теориях С. и др. В науке 20 в. большое внимание уделяется исследованию языка как С. (лингвистические С.); в результате обобщения этих исследований возникла общая теория знаков — семиотика. Задачи обоснования математики и логики вызвали интенсивную разработку принципов построения и природы формализованных, логических С. (металогпка, метаматематика). Результаты этих исследований широко применяются в кибернетике, вычислительной технике и др.
При использовании других оснований классификации С. выделяются статичные и динамичные С. Для статичной С. её состояние с течением времени остаётся постоянным (например, газ в ограниченном объёме — в состоянии равновесия). Динамичная С. изменяет своё состояние во времени (например, живой организм). Если знание значений переменных С. в данный момент времени позволяет установить состояние С. в любой последующий или любой предшествующий моменты времени, то такая С. является однозначно детерминированной. Для вероятностной (стохастической) С. знание значений переменных в данный момент времени позволяет только предсказать вероятность распределения значений этих переменных в последующие моменты времени. По характеру взаимоотношения С. и среды С. делятся на закрытые — замкнутые (в них не поступает и из них не выделяется вещество, происходит лишь обмен энергией) и открытые — незамкнутые (постоянно происходят ввод и вывод не только энергии, но и вещества). По второму закону термодинамики, каждая закрытая С. в конечном счёте достигает состояния равновесия, при котором остаются неизменными все макроскопические величины С. и прекращаются все макроскопические процессы (состояние максимальной энтропии и минимальной свободной энергии). Стационарным состоянием открытой С. является подвижное равновесие, при котором все макроскопические величины остаются неизменными, но непрерывно продолжаются макроскопические процессы ввода и вывода вещества. Поведение названных классов С. описывается с помощью дифференциальных уравнений, задача построения которых решается в математической теории С.
Современная научно-техническая революция привела к необходимости разработки и построения автоматизированных С. управления народным хозяйством (промышленностью, транспортом и т. д.), автоматизированных С. сбора и обработки информации в национальном масштабе и т. д. Теоретические основы для решения этих задач разрабатываются в теориях иерархических, многоуровневых С., целенаправленных С. (в своём функционировании стремящихся к достижению определённых целей), самоорганизующихся систем (способных изменять свою организацию, структуру) и др. Сложность, многокомпонентность, стохастичность и др. важнейшие особенности современных технических С. потребовали разработки теорий систем «человек и машина», сложных систем, системотехники, системного анализа.
В процессе развития системных исследований в 20 в. более четко были определены задачи и функции разных форм теоретического анализа всего комплекса системных проблем. Основная задача специализированных теорий С. — построение конкретно-научного знания о разных типах и разных аспектах С., в то время как главные проблемы общей теории С. концентрируются вокруг логико-методологических принципов системного исследования, построения метатеории анализа С. В рамках этой проблематики существенное значение имеет установление методологических условий и ограничений применения системных методов. К числу таких ограничений относятся, в частности, т. н. системные парадоксы, например парадокс иерархичности (решение задачи описания любой данной С. возможно лишь при условии решения задачи описания данной С. как элемента более широкой С., а решение последней задачи возможно лишь при условии решения задачи описания данной С. как С.). Выход из этого и аналогичных парадоксов состоит в использовании метода последовательных приближений, позволяющего путём оперирования неполными и заведомо ограниченными представлениями о С. постепенно добиваться более адекватного знания об исследуемой С. Анализ методологических условий применения системных методов показывает как принципиальную относительность любого, имеющегося в данный момент времени описания той или иной С., так и необходимость использования при анализе любой С. всего арсенала содержательных и формальных средств системного исследования.
Лит.: Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20; 26, ч. 2; т. 46, ч. 1; Ленин В. И., Полн. собр. соч., 5 изд., т. 18, 29; Хайлов К. М., Проблема системной организованности в теоретической биологии, «Журнал общей биологии», 1963, т. 24, № 5; Ляпунов А. А., Об управляющих системах живой природы, в сборнике: О сущности жизни, М., 1964; Щедровицкий Г. П., Проблемы методологии системного исследования, М., 1964; Вир Ст., Кибернетика н управление производством, пер. с англ., М., 1965; Проблемы формального анализа систем. [Сб. ст.], М., 1968; Холл А. Д., Фейджин Р. Е., Определение понятия системы, в сборнике: Исследования по общей теории систем, М., 1969; Месарович М., Теория систем и биология: точка зрения теоретика, в кн.: Системные исследования. Ежегодник. 1969, М., 1969; Малиновский А. А., Пути теоретической биологии, М., 1969; Рапопорт А., Различные подходы к общей теории систем, в кн.: Системные исследования. Ежегодник. 1969, М., 1969; Уемов А. И., Системы и системные исследования, в кн.: Проблемы методологии системного исследования, М., 1970; Шрейдер Ю. А., К определению системы, «Научно-техническая информация. Серия 2», 1971, №7; Огурцов А. П., Этапы интерпретации системности знания, в кн.: Системные исследования. Ежегодник. 1974, М., 1974; Садовский В. Н., Основания общей теории систем, М., 1974; Урманцев Ю. А., Симметрия природы и природа симметрии, М., 1974; Bertalanffy L. von, An outline of general system theory, «British Journal for the Philosophy of Science», 1950, v. I, № 2; Systems: research and design, ed. by D. P. Eckman, N. Y. — L., [1961]; Zadeh L. A., Polak Е., System theory, N. Y., 1969; Trends in general systems theory, ed. by G. J. Klir, N. Y., 1972; Laszlo Е., Introduction to systems philosophy, N. Y., 1972; Unity through diversity, ed. by W. Gray and N. D. Rizzo, v. 1—2, N. Y., 1973.
- Предыдущая
- 145/170
- Следующая