Выбери любимый жанр

Хаос и структура - Лосев Алексей Федорович - Страница 112


Перейти на страницу:
Изменить размер шрифта:

112

II. типы числа.

Нетрудно перейти к становлению непосредственной сущности числа, которую мы понимаем как

III. арифметические операции.

Выше (§ 62.2) мы уже столкнулись с тем диалектическим фактом, что арифметическая операция связана с категорией становления. И действительно, покамест мы говорим о типах числа, у нас имеются только мертвые и неподвижные образцы чисел. С некоторым становлением мы имеем дело в натуральном ряде чисел. Но это очень отвлеченное становление, становление первого акта полагания числа вообще, но не становление развитой системы чисел. Развитая система чисел («типы числа») предполагает разнообразные направления счета, а не ограничивается только одним и единственным направлением, которое лежит в основе натурального ряда чисел. Наличие же разнообразных направлений счета делает возможным разнообразную комбинацию этих направлений. А факт разнообразных комбинаций направления счета и есть факт арифметических операций.

Чтобы идти дальше, необходимо переходить уже и к комбинации самих арифметических операций. Становление, когда оно заканчивается, превращается в ставшее; и — параллельно с этим — арифметические операции, следуя одна за другой, превращаются в некоторую единую их комбинацию, которая как таковая останавливается, как бы застывает, и все, что здесь происходит, происходит уже в твердых пределах застывшей таким образом комбинации. Когда, напр., мы имеем дело с т. н. комбинаторикой [121], то всегда тут налицо ряд операций (скажем, «взять из А [т] сочетаний по [л]»), который, однако, обладает одной неподвижной идеей, определяемой данными категориями. В детерминантах также имеется некая общая идея распределения чисел, в пределах которой возможен ряд тех или иных действий. Везде в таких случаях мы имеем дело с некоторым осуществленным и застывшим ставшим и с тем или другим рядом операций (становление), но только в твердых пределах этого ставшего. Ниже мы увидим, что это есть, если употреблять общий и совершенно условный термин, —

IV. комбинаторно–матричное исчисление.

Наконец, согласно общей схеме, от ставшего факта мы переходим к выраженному факту, к выразительной форме числовой сущности. Застывшее состояние предыдущей диалектической ступени тут должно оживиться и перейти в бурное движение. Устойчивость мыслится здесь не на фоне твердо расположенных чисел, но на фоне их движения, становления. Однако это становление уже не может быть становлением простых актов полагания или даже становлением комбинаций этих актов (этапы, пройденные нами раньше), но оно может быть только становлением самого числового ставшего. Мы должны найти законченность структуры подвижных систем чисел, когда исходят не из определенной и твердо данной комбинации чисел, но когда дается закономерность в движении ряда таких чисел, закономерность их взаимоотношения. Тут мы столкнемся с интересными учениями, которые хотя и относятся обычно к алгебре, но представляют собою чистейшую арифметику (в нашем смысле слова, понимая под этим науку о непосредственной значимости числа). Дадим условное название этому отделу арифметики —

V. высшая арифметика, отнеся сюда теорию сравнений, групп, колец, лучей и полей (тел). В учении об арифметических полях (или, как еще говорят, телах) первоначальный акт числового полагания доходит до максимальной выраженности и развернутости, где он дан уже как социальное бытие, как бытие даже высшее, чем просто социальное, ибо оно включает в себя и все индивидуальное, — насколько, разумеется, способно чисто арифметическое бытие выразить индивидуальное и социальное.

I. НАТУРАЛbНЫЙ РЯД ЧИСЕЛ (БЫТИЕ СУЩНОСТИ ЧИСЛА) § 85. Единица и соседние категории.

1. Непосредственное бытие числа в себе, данное как чистый акт полагания, характеризуется не одной, а целой системой категорий, которую надо уметь формулировать.

Прежде всего чистый акт полагания может быть взят как сам по себе, так и в совокупности своих внутренних и внешних различий. Язык четко различает все эти категории, и мимо них невозможно пройти без внимания. Чистый числовой акт полагания, взятый до всякого самоопределения, рождает из себя ту категорию, которую можно назвать «одно». Если мы представим себе, что акт полагания внутренно разделился, т. е. в нем возникло внутреннее инобытие, то чистый акт полагания как таковой в этих условиях есть единичность. Если предполагается внешнее инобытие, т. е. другие акты полагания, то каждый из всех этих актов полагания, взятый в отдельности, есть единственный, единственность, а все эти внешние друг в отношении друга акты, взятые как чистый акт полагания, есть единство. Наконец, чистый акт числового полагания, взятый сразу и со своим внутренним, и со своим внешним инобытием, есть и единица. Единица потенциально дробима внутри себя и потенциально предполагает дробимость и множественность вне себя, причем эти процессы внутренней и внешней множественности суть вместе одно абсолютное тождество. Будем ли делить единицу на отдельные части, будем ли вокруг этой единицы утверждать новые единицы, результат здесь будет один и тот же: будут появляться все новые и новые единицы. Это внутренно–внешнее тождество инобытия чистого акта полагания оформляет этот акт с обеих сторон, внутри и снаружи, и превращает в прочно оформленную положенность, которую мы называем единицей (отличая ее от одного, которое есть тот же акт полагания, но до своего внутреннего и внешнего инобытия).

2. Единица, таким образом, предполагает сложное диалектическое строение, которое вместе с тем является моментом и во всех прочих числах, поскольку каждое число есть тоже сначала некая единица вообще (а потом уже данное число в частности). Если формулировать раздельно все диалектические моменты, которые необходимым образом входят в состав единицы, то мы получим по крайней мере ьиестипланную структуру.

a) В единицу входит, как и во всякое число, прежде всего тот перво–акт, перво–число, который является нашим перво–принципом и формулирован в фундаментальном анализе числа. Этот факт тождествен и во всех единицах, и во всех числах вообще.

b) Единица, далее, есть акт полагания этого перво–акта. Чтобы перейти в реальное число, перво–акт должен стать реально положенным числом. Тут тоже единица еще ничем не отличается от всякого другого числа.

c) Единица предполагает свое дробление, т. е. она содержит в себе внутреннее инобытие, она утверждает внутри себя свое инобытие.

d) Единица предполагает и свое окружение другими такими же единицами, предполагает внешнюю множественность, т. е. содержит в себе свое внешнее инобытие, вернее, предполагает внешнее инобытие.

e) Ни то, ни другое инобытие, однако, не положено в единице отдельно, но оба они даны как одно неделимое абсолютное тождество, как тождество абсолютной ограниченности и очерченности единицы. То и другое инобытие дано в единице только потенциально, а реально она потому и единица, что в ней нет разделенности внутри и нет реальной множественности вовне. Единица — то, что внутри неразлично и вне — без всяких прибавлений, хотя если бы это было только внутреннее и внешнее безразличие, то это не было бы единицей, а было бы одним, т. е. числом, совсем не стоящим в начале натурального ряда чисел. Тут–то и выясняется, что внутренно–внешнее инобытие дано в единице потенциально, т. е. постольку, поскольку существует в ней абсолютная граница и контур, абсолютная, так сказать, смысловая устойчивость. Эта граница предполагает внутреннее и внешнее инобытие, но именно только предполагает, полагает в потенции, а не в виде ряда реальных и раздельных актов полагания.

f) Наконец, это тождество внутренно–внешнего инобытия в свою очередь должно быть тождественно с тем реальным актом полагания, который упомянут выше, в пункте b. Абсолютная отграниченность и очерченность извне и абсолютная неразличимость внутри должны возникать моментально, как только совершается самый акт полагания. Иначе в единице акт положенности разойдется с актом оформления и единица перестанет быть единицей и раздробится на дискретные части. Собственно говоря, тут–то и возникает спецификум единицы, потому что все предыдущие моменты в той или другой мере свойственны и прочим числам. Тождество всех моментов с одним чистым актом полагания и создает впервые единицу. Прочие же моменты дают ей только твердую и прочную оправу, как бы кованность и нерушимость.

112
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело