Выбери любимый жанр

Космические рубежи теории относительности - Кауфман Уильям - Страница 45


Перейти на страницу:
Изменить размер шрифта:

45

Космические рубежи теории относительности - _154.jpg

РИС. 11.5. Механизм Пенроуза. Если влетающая в эргосферу частица распадается там на две части, то часть, выбрасываемая назад из эргосферы, может вынести огромное количество энергии. Захваченная часть тела опускается под горизонт событий и «заглатывается» чёрной дырой. При этом некоторая доля энергии вращения дыры передаётся выбрасываемой частице. (По Дж. Уилеру.)

К астрономическим следствиям этого явления мы обратимся в одной из следующих глав, а сейчас обрисуем научно-фантастическое приложение механизма Пенроуза. Допустим, что некая высокоразвитая цивилизация обнаружила в космосе вращающуюся чёрную дыру и построила вокруг этой дыры город (рис. 11.6). В городе запущена лента конвейера, уходящая в эргосферу, но повсюду остающаяся выше горизонта событий. Круглосуточно грузовики - мусоровозы собирают в городе все отбросы и перегружают их в контейнеры, расположенные на ленте конвейера. Конвейер уносит их в эргосферу, где весь мусор сбрасывается под горизонт событий. Вытряхивание мусора из контейнеров и есть, по сути, распад объекта на две части. Так как мусор поглощается чёрной дырой, то каждому контейнеру передаётся некоторая доля энергии вращения дыры. Поэтому лента конвейера испытывает мощное ускорение при каждом сбрасывании её движение становится всё более быстрым. Жители города вокруг чёрной дыры подключили к ленте конвейера генератор и получают от него огромное количество энергии!

Космические рубежи теории относительности - _155.jpg

РИС. 11.6. Город, не загрязняющий окружающую среду. Когда мусор из контейнеров выбрасывается с ленты конвейера в эргосфере, лента конвейера испытывает ускорение. Если присоединить к ней электрогенератор, то можно использовать энергию, извлеченную из чёрной дыры. (По Мизнеру, Торну и Уилеру.)

Другое приложение механизма Пенроуза, хотя и менее фантастическое, но столь же удивительное, было найдено в начале 1970-х годов рядом астрофизиков, в том числе Прессом и Тьюкольским. Подобно тому как частицы могут извлекать энергию из вращающейся чёрной дыры при пролёте через её эргосферу, может быть усилено и излучение, проходящее мимо такой дыры. Это явление называется сверхизлунательным рассеянием. Для иллюстрации представим себе чёрную дыру, окруженную сферическим зеркалом, как на рис. 11.7. Направим луч света на дыру через небольшое отверстие в зеркале. При многократном отражении в сферическом зеркале свет способен извлекать из чёрной дыры всё большее количество энергии, а чёрная дыра постепенно замедляет вращение. В итоге через отверстие в окружающем дыру зеркале начинает выходить большое количество излучения - получается почти неисчерпаемый источник энергии. Однако если сразу после поступления первоначального луча отверстие в зеркале заделать, то излучению будет некуда выходить. Постоянно встречаясь со сферическим зеркалом и отражаясь от него, излучение будет становиться всё более мощным при каждом прохождении через эргосферу. Поэтому зеркало будет подвергаться всё более сильному давлению излучения изнутри, пока напряжения в нём не станут столь велики, что зеркальная сфера взорвется, высвобождая огромное количество накопленной им энергии. Таков механизм чернодырной бомбы!

Космические рубежи теории относительности - _156.jpg

РИС. 11.7. Сверхизлучательное рассеяние. Проходящий вблизи вращающейся чёрной дыры свет усиливается. Если окружить такую чёрную дыру сферическим зеркалом, то Излучение можно усилить практически неограниченно. Если в зеркале не будет никаких отверстий, то может произойти такое усиление света, что он разорвет на части зеркало и получится чернодырная бомба.

Помимо того что над вращающейся чёрной дырой происходят столь необычные вещи, решение Керра таит ещё более удивительные неожиданности в «перекошенном» пространстве-времени вблизи сингулярности. В некоторых отношениях геометрия вращающихся чёрных дыр напоминает геометрию заряженных чёрных дыр. Поэтому дальше в этой главе будет много общего с анализом решения Райснера-Нордстрёма, проведенным в гл. 10.

Вспомним, что у шварцшильдовской чёрной дыры имеется сингулярность, окруженная одним-единственным горизонтом событий. Такова простейшая из чёрных дыр. Чёрная дыра без вращения сферически симметрична -она одинакова во всех направлениях. Однако при «включении» вращения свойства чёрной дыры уже оказываются неодинаковы во всех направлениях: существуют некие «привилегированные» направления. Ось вращения, вокруг которой крутится чёрная дыра, непохожа на все другие направления. Экваториальная плоскость дыры (она рассекает её на симметричные половины перпендикулярно оси вращения) тоже непохожа на все другие плоскости. Короче говоря, в разных направлениях свойства вращающейся чёрной дыры различны. Ввиду вращения такой чёрной дыры вокруг некоторой оси решение Керра называют осесимметричным (или аксиальносимметричным).

Самые фундаментальные изменения в зависимости от направления во вращающейся чёрной дыре связаны с сингулярностью. Сингулярность - это всегда то место внутри чёрной дыры, где искривление пространства-времени бесконечно велико. Как в шварцшильдовской чёрной дыре, так и в чёрной дыре Райснера-Нордстрёма сингулярность представляет собою точку в центре дыры. Однако когда чёрная дыра ещё и вращается, то природа сингулярности резко меняется. В керровской чёрной дыре сингулярность - это кольцо в середине дыры. Такая кольцевая сингулярность лежит в экваториальной плоскости вращающейся чёрной дыры: центр кольца находится на оси вращения, а само кольцо перпендикулярно оси. Если чёрная дыра не вращается (т. е. это решение Шварцшильда или Райснера-Нордстрёма), то всякий, направляющийся к центру дыры, наталкивается на сингулярность. Однако в случае вращающейся чёрной дыры в сингулярность попадает только тот космонавт, который летит к дыре в экваториальной плоскости. Кривизна пространства-времени становится бесконечной лишь при подходе со стороны экваториальной плоскости. Двигаясь под любым иным углом, а не в экваториальной плоскости, космонавт не заметит бесконечного искривления пространства-времени. Космонавт, приближающийся к центру керровской чёрной дыры под любым отличным от нуля углом к экваториальной плоскости, не будет непременно разорван на части бесконечно большими приливными силами.

Такой кольцевой характер керровской сингулярности - поистине изумительное свойство вращающихся чёрных дыр. Он означает, что космонавт, летящий к центру керровской чёрной дыры, может пройти невредимым сквозь это кольцо (рис. 11.8). Проскочив сквозь кольцевую сингулярность, космонавт попадает в совершенно новую и странную область пространства-времени, с какой мы ещё не встречались. Это -отрицательное пространство. Вопреки тому, что говорилось в предыдущих главах, космонавт, пройдя сквозь кольцевую сингулярность, оказывается на отрицательном расстоянии от центра чёрной дыры. Так можно оказаться в «минус десяти километрах» от дыры!

Космические рубежи теории относительности - _157.jpg

РИС. 11.8. Сингулярности. В чёрных дырах, соответствующих решениям Шварцшильда и Райснера-Нордстрёма, сингулярность точечная. С какой бы стороны вы ни летели к центру такой дыры, вас ждет гибель. Однако сингулярность керровской чёрной дыры - это кольцо, сквозь которое космонавт может попасть в отрицательную Вселенную (в мир антигравитации).

Некоторые физики отвергают саму мысль об отрицательном расстоянии. В поисках другого истолкования этой новой области они обнаружили, что здесь реализуются все свойства антигравитации - по «другую сторону» кольцевой сингулярности тяготение превращается в отталкивание. В этой области пространства-времени чёрная дыра отталкивает и вещество, и лучи света. Поэтому говорят об отрицательной Вселенной или о мире антигравитации. Существование миров антигравитации самое удивительное свойство вращающихся чёрных дыр в отличие от дыр заряженных.

45
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело